

USING GAME ENGINES FOR NON 3D GAMING APPLICATIONS

Jerome Dupire, Alexandre Topol, Pierre Cubaud

CEDRIC/CNAM
 292, rue Saint Martin 75003

Paris, France
E-mail: {dupire, topol, cubaud}@cnam.fr

KEYWORDS
Game engine, 3D application, Digital library, Virtual reality.

ABSTRACT
We present in this paper the use of game technologies during
the development of 3 dimensional interfaces for accessing
digital libraries. We compare these different tools through a
practical point of view and propose to consider them in a
more general context of 3D applications development.

INTRODUCTION
At CNAM, two digital libraries (DLs) born from our
laboratory are accessible. The Association des Bibliophiles
Universels (ABU, http://abu.cnam.fr), started in October
1993 and has today thousands of books downloaded daily
and has become one of the most active French speaking
cultural Web sites. The Conservatoire Numérique (CNUM,
http://cnum.cnam.fr), was put online in January 2000. Three
hundred reproductions of old scientific and technical books
are accessible on this Web site. These digital libraries are
accessible online with a WWW-based interface and a
standard architecture.

We present in this paper different projects for accessing
online DL and fulfil the catalogue browsing and the reading
tasks. Since 1998, our interfaces have evolved in design and
interactions, but have also taken into account different
technical choices. We will explain how our prototypes have
evolved, from the original, VRML based, one to the last
ones, which were built with modern video games APIs
(Application Programming Interface).

3D DIGITAL LIBRARIES INTERFACES

Collection Browsing
We have tried to provide to CNUM users and librarians a
similar experience using 3D visualization (Cubaud et al.
1998). We collected books bindings images and arranged
them into a 3D scene depicting a virtual, very large, shelf. In
such a scene, the user can infinitely rotate the point of view
and move in order to zoom in or out.

Binding Browsing and Reading Tasks
After a first attempt to design reading tools using 2D
transparent windows (Cubaud and Topol 2001) in a VRML
3D scene, we developed a new metaphor of book (the tripod
on Fig 1), which allows the reader to handle and work (e.g.
read) on digital documents. The POV (Persistence Of

Vision) scene on Fig 1 depict a "cockpit" architecture,
similar in spirit to the Web Forager interface (Card et al.
1996). Reading books and browsing collection can be done
in the same space

Fig 1: The whole collection is rendered and accessible in the
background. Tripods allow to move and read facsimiles.
Favorite books are shown in the foreground.

3D IMPLEMENTATION PROBLEMS
Each new generation of dedicated hardware for real-time 3D
exhibits a considerable growth of processing speed, storage
capabilities and, to less extent, screen resolution.
Experiments described in (Cubaud et al. 1998) were in 1997-
8 below acceptable frame refresh rates for fluid interaction
(about 25 frames/s is considered in the game industry). The
memory dedicated to textures management was at that time
too small for scenes such as the one reproduced on Fig 1. It
is today quite possible to handle scenes that hold about 10K
different books textures (which is the forecasted size of the
CNUM collection). Pages are bigger image files, and at most
a hundred can be stored directly in the graphic card's
memory. This forbids "brute force" algorithms for fast page
turning with large books. This problem has recently been
studied in (Card et al. 2004).

The prototype described in (Cubaud and Topol 2001) was
mainly written in Java and relied on the 3D engine enclosed
in a VRML browser. The amount of scripts required to
implement the interaction behaviors of the 3D objects is
important : over 90% of the demonstrator's code is made of
Java scripts. Telling that VRML and Java is a useless couple
to create interactive scenes is not the point. We do believe

that almost every imaginable interaction can be coded this
way. But it demands a long coding and debugging time. To
ease the specification of such interactive scenes some
extensions to VRML were proposed in (Topol 2002) along
with a description of the corresponding client navigator.
Nevertheless, the VRML language, like a game scripting
language, is based on an specific engine (the VRML plugin)
which only allows to create applications with predefined
appearance and interactions (those enclosed in the VRML
engine). Hence, creating a tailored 3D application is
impossible. For instance, with the Quake engine, one can
only build FPS-like applications or games.

The prototype based on the book metaphor is a stand-alone
application written in C++ and taking advantage of the
OpenGL library (Cubaud et al. 2002). All 3D objects were
procedurally coded, as well as the texture mapping. The
demonstrator includes a simplified collection shelf, tripods
creation/deletion and page turning functions. This software
has been demonstrated to IST professionals at JFT'2003
(Cubaud et al. 2003) and ECDL'2003 (Dupire 2003). A
wider audience has been reached during a two-weeks long
demo session for the annual "Image par image" exhibition
(Montreuil, France) in march 2003. In October 2004, a
similar demonstration took place at the CNAM library for
the "Science en fête" nation-wide event. Each time, a
dedicated system was installed for the 3D environment,
while another offered access to the CNUM website. A time
switch limited the session to a few minutes and user's actions
were logged. We have concluded from these demonstrations
that users reached quite quickly an understanding of the
tripod operations. The page turning functions have been
acclaimed by the general public and librarians (although not
always by computer professionals). Observation of users
droved us to modify the interface. The moving distance for
tripods has been bounded: a tripod can not be bigger than the
screen, nor too small when in the background. Collision
detection has been improved to detect the user’s actions in
the scene. This was done by ray casting from the 3D cursor.
Scene lighting and objects shadows have been implemented
to ease the positioning task of the tripods. If the solutions to
improve the interface usefulness were evident, their
implementation was heavy to do and time consuming (i.e.
the ray casting had to be entirely hard coded).

GAME ENGINES SOLUTIONS
Like in almost every 3D applications, our interface needs a
good representation, animation and interaction management.
This means :

- a tight connection with a 3D modeler,
- simple to use animation procedures,
- and build in input devices functions.

3D APIs like OpenGL were created for CAD software
rendering and do not provide many other functions. DirectX
contributions are still very low level and demand important
programming skills to achieve simple interactions. With both
APIs, no model loaders, collision detections or animation
manager is given. On the contrary, the world of video games
was confronted with this type of constraints since a very
long time. With the apparition of the first 3D games and
thanks to the increasing capabilities of the hardware,

programmers found many solutions in order to unceasingly
improve the quality of graphics, the fluidity of animations,
the immersion with sound environments. It is far beyond the
simple world of video games that this progress is reflected.
No doubt that the breath generated by this medium is a great
part of the evolution of graphics cards and more generally
the whole computer configurations. For example, one can
see that new functions are available on each new graphic
cards, that processors have new opcodes (SSE, SSE2, 3D
Now!) for working on matrices, that motherboards evolve to
allow the important data flow necessary for graphics cards
(AGP and PCI Express buses).

Among the many technical contributions generated by this
evolution, the “game engine” is one of the most interesting.
It encloses many aspects that need to be managed within a
game. Since one wishes to obtain the best graphics and to
reach many programming functionalities, these game
engines become impossible to circumvent. Those can be
commercial products or private engines developed by game
studios in order to be used for several projects. With such
engines it becomes easier to program a 3D game and more
generally a 3D application. The first and most famous is the
Quake engine (IdSoftware), available as an open source
format. It allows to create Quake-like games or applications.
Since then, game engines have evolved toward complete
software architectures for games. They became supple
enough to permit the programming of almost any 3D game.

Developed by and for the programmers, these game engines
offer an environment created especially to implement the
functionalities that are specific to the 3D video games. Thus,
the management of an animated model, the collisions
between objects, the interaction between the player and the
game, through the keyboard, the joystick or the mouse, are
as many aspects whose implementation is facilitated. And
time won with these aspects can be consumed to think and
implement the right interactions (known as the gameplay for
games). The most recent games use engines that go beyond
visual and interaction aspects. For example, programmers
can rely on :

- a physical engine to simulate physical laws within the
virtual environment,

- an audio engine to add music and complex acoustical
effects,

- an artificial intelligence (AI) engine to program non
human players’ behaviors.

Properties awaited for a 3D interface are very close to the
ones for 3D video games. Indeed, when creating a 3D
interface for information or document visualization, the
rendering and animations must be optimized. Like in games,
“visual heuristics” are also one example of the "many
complex information tasks [that] can be simplified by
offloading complex cognitive tasks onto the human
perceptual systems" (Hearst et al. 1996). From a gamer’s
point of view, one can say that frame per seconds is one of
the most important thing when dealing with a 3D interface.
Taking this fact into account when programming with a
game engines is easier than with standard APIs. Some
engines can guarantee a minimum frame rate and most give
tools to tune an application. For this reason, game engines

represent a good software architecture for implementing any
kind of 3D applications and not only games.

The easiest and less time consuming way to implement a DL
with a game engine would have been to use a quake-like
engine. Christoffel and Schmitt chose this original solution
(Christoffel and Schmitt 2002). With such scripted engines,
one can only create games or applications that look like a
shoot game with player or user enclosed in a maze. Only a
real looking like library can be recreated and this solution
does not meet our design choices. We think that in a real or
“virtually real” library, unneeded moves are often necessary
to find the shelves containing the books of interest, to pick it
and to go back to a reading desk to work on it. These steps
can be simplified in a virtual DL to ease the training of
inexperienced or occasional users. Hence, to allow this, we
have used 3D game engines.

We have developed two prototypes of digital libraries using
game engines. The first one uses the Virtools engine (Fig 2),
initially conceived to create on-line web games. It seemed to
be very practical because one can easily describe any kind of
application. To achieve that, Virtools is operating through
two main parts : the first one, Virtools Dev makes it possible
to specify how the application works, thanks to a graphic
programming system (behavior boxes and connecting
arrows). The second one is a plugin for web browser which
allow to download and play the application. This
environment is easy to use and to provide to the final user.
However, its graphical programming environment proved to
be unpractical for the implementation of interactive 3D
objects such as ours. Indeed, building new boxes (i.e. when a
behavior is needed and not available in the software) is quite
tough and complex. An other point of view is that Virtools,
with it’s HTML compliant browser, is mainly dedicated to
web applications design and does not fit to stand alone
applications.

Fig 2: A simple Virtools prototype.

Then, the second solution was a complete rewriting of the
OpenGL software, using Criterion’s Renderware Graphics
(RWG). A screenshot of this prototype can be seen in Fig 3.
RWG is a mid level API (middleware), lower than Virtools.
RWG functionalities are integrated into C or C++ programs
through the use of libraries (.lib) and headers (.h). It means
that RWG provides to the programmer a lot of functions

allowing a higher management level of graphics than
OpenGL do. For instance, the 3D scene rendering is
achieved with only one function (RpWorldRender()). By
the way, and for the main aspects of an interactive software
development, the programmer can easily (and rapidly)
design each part of it.

The collision detection is widely used to manage the user’s
actions. Bounding boxes are computed for each part of
interest of the 3D objects in the scene (i.e. pages, tripod’s
root, books on the shelves, …). The collision detection test is
launch in every frame, called by a high level function
(RpAtomicForAllIntersections()). Most of things are already
coded and included into this function. The programmer only
needs to write a callback function to specify a reaction to a
collision.

On the other side, since RWG is build over OpenGL or
Direct3D (two distinct API are provided), the programmer
can tune the code with his/her own functions. RWG go
further than OpenGL by giving tools, not only for the 3D
graphics management, but also for the main aspects of any
3D interactive software (i.e. collision detection, picking, 3D
objects animation, 2D graphics management, Macromedia
Flash binding, etc...). Thus, our experience with RWG was
interesting, even if the prerequisite programming skill was
more important than with Virtools. Another interesting
aspect of RWG is that it is platform independent, i.e. the
same code can be compiled for PC or any kind of other
entertainment system (PS2, Xbox, etc..).

A main drawback of RWG is the slow integration of new
rendering techniques. Since RWG relies either on OpenGL
or Direct3D, technical improvements of the rendering
pipeline must first be integrated within the low level APIs.
Another issue is the cost of such professional game engine
that can only afforded by rich companies.

Fig 3: Textures, 3D objects and interaction can be easily
handled in a RWG based application.

Finally, both of the engines were compliant with most
famous 3D modeller (i.e. 3DSMax, Maya). This was the
origin of a important time gain, dealing with the 3D objects
building step. Importing 3D object in the scene was quite
easy and direct. This new feature (compared to the older
technologies) allows more flexibility, even creativity in the

design process of the objects, by using a dedicated tool to do
it (versus a procedural “design”).

CONCLUSION – FUTURE WORK
We presented in this paper a 3D digital library development
project, using different programming technologies, from
VRML to the up to date game engines. Benefits of these last
ones are obvious, providing on one hand, high level function
to manage usual interaction aspects and, on the other hand,
allowing the programmer to tune the application regarding to
his/her needs. However, these solutions are very expensive
because RWG and Virtools are commercial products,
initially aimed to the video game industry.

The following table summarizes the pros and cons of each
studied solutions based on our experience. To each criterion
evaluated is given a mark from 1 (bad) to 5 (excellent).

D
es

cr
ip

tio
n

(V
R

M
L)

V
is

ua
l

pr
og

(V

irt
oo

ls
)

3D
 A

PI
 p

ro
g

(O
G

L,
 D

3D
)

3D
 G

E
pr

og

(R
W

G
)

Rendering
 Speed 3 3 5 5
 Quality 1 3 5 4
 Flexibility 1 2 5 3
Animation &
Interactions

 Collision
detection

2 4 1 5

 3D interaction 2 3 2 4
 Animations 3 3 1 5
Resources
 File loading 3 4 1 4
 Documentation 5 2 5 3
 Examples 5 2 5 5

Our next aim is to provide a better immersion feeling to the
reader by using a semi-spherical Elumens ‘Vision Station’
(VS) display. Sold with it’s own API for correcting image
projection, the final integration is not as simple as we first
expected. Indeed, the VS API has to be handled in an
OpenGL context. So we need to access to the OpenGL lower
functions to use it. Thus, we are going to study and compare
the open source 3D game engines, in order to have both
access to low and high programming level. A lot of free 3D
engines already exist, with various features. Our first step
will be to compare the Irrlicht engine (Irrlicht) with the
Delta3D one (Delta3D). Both are free and open source and

the Delta3D user community have already developed a add-
on library to connect with the VS. By the way, we should
have the capability to build easily complex 3D interactive
environments, composed with heterogeneous devices like
immersive display, position sensors or datagloves.

REFERENCES
Card S. K., Robertson G., York W. “The WebBook and the
Web Forager : An Information Workspace for the World-
Wide-Web”, In Proc. of ACM CHI'96. Vancouver, Canada,
April 1996.

Card S. K., Hong L., Mackinlay J. D., Chi E. H. “3Book: A
Scalable 3D Virtual Book”, In Proc. of ACM CHI'04.
Vienna, Austria, April 2004.

Christoffel M., Schmitt B. “Accessing Libraries as Easy as a
Game”, in ACM JCDL Workshop, USA, Portland, 2002.
Cim A. Le livre. Flammarion, vol. 5, p. 218, 1990.

Cubaud P., Thiria C., Topol A. “Experimenting a 3D
Interface for the access to a Digital Library”, In Proc of
ACM DL’98. Pittsburg, USA, June 1998.

Cubaud P., Topol A. “A VRML-based user interface for an
online digitized antiquarian collection”. Proc of ACM
SIGGRAPH Symposium Web3D'2001, Paderborn, Germany,
Feb. 2001.

Cubaud P., Stokowski P., Topol A. “Mixing Browsing and
Reading Activities in a 3D Digitized Library”. In Proc. of
ACM-IEEE JCDL'02, Portland, USA, June 2002.

Cubaud P., Dupire J., Topol A. “Textes, images, volumes :
les bibliothèques numériques au CNAM”. Premières
journées francophones de la toile (JFT). Tours, France, july
2003.

Delta3D Engine at http://delta3d.org/

Dupire J. “Digital libraries at CNAM : 1993-2003”. In Proc.
of ECDL'03. Trondheim, Norway, Aug. 2003.

Hearst M., Kopec G., Brotsky D. “Paper and Digital
Documents”, in D-Lib Magazine, ISSN 082-9873, June,
1996.

Irrlicht Engine at http://irrlicht.sourceforge.net/.

Topol A. “Interaction 3D pour les paysages
informationnels”, Conservatoire nat. des Arts et métiers PhD
thesis, 2002.

