Course #: MATH 5343
Course Title: Numerical Solution of Partial Differential Equations
Credit Hrs: 3
Term: Spring 2011
Course Meetings & Location: MW 15:00 – 16:20, Bell Hall 130 A
Prerequisite Courses: MATH 2326, 3323, 4329 or equivalent, and programming experience
Course Fee (if applicable) None
Instructor: Dr. Son-Young Yi
Office Location: Bell Hall 218
Contact Info: E-mail syi@utep.edu
Phone (915) 747-6864

Office Hours: MW 13:00 – 14:00
Textbook(s), Materials: Computational Partial Differential Equations Using MATLAB by Jichun Li and Yi-Tung Chen
Course Website http://www.math.utep.edu/faculty/yi/math5343s11.html
Course Objectives (Learning Outcomes):
1. the mathematical and qualitative properties of three basic types of PDE (elliptic, parabolic and hyperbolic equations).
2. the basic principles of Finite Element Method and Finite Difference Method
3. how to implement and test the numerical schemes in a computer language (MATLAB)
4. how to apply these methods to application problems

Course Activities/Assignments: **Homework**: Homework/Lab assignments will be collected throughout the semester. **No late homework/lab report** will be accepted. Computer programming must be done in MATLAB.

Course project: In addition to the homework/lab assignments, students will work on a final project on a topic of their own choice, preferably related to their research. A project proposal and a final report should be turned in and each student will present his/her final project on the final exam day. Detailed instructions will follow.

Assessment of Course Objectives: Final project presentation is scheduled for Monday, May 9.
Tentative Course Schedule:

Week 1 (1/19): Course introduction, Overview of PDEs

Week 2 (1/24 – 1/26):
- Overview of Numerical methods for PDEs
- Finite Difference Method for two-point boundary value problem:
 - Introduction and finite difference formulas

Week 3 (1/31 – 2/2):
- Finite Difference Method for two-point boundary value problems:
 - Error and stability analysis, variable spacing in the grid, discontinuous coefficients, and mildly nonlinear problem

Week 4 (2/7 – 2/9):
- Finite Difference Method for 2-D Elliptic Equations
- Computer lab

Week 5 (2/14 – 2/16):
- Numerical solution of linear systems
 - Classical iterative methods
 - Conjugate Gradient(CG)

Week 6 (2/21 – 2/23):
- Conjugate Gradient and Preconditioned CG continued
- Finite Difference Method for Parabolic Equations:
 - Forward, Backward and Crank- Nicolson methods, ADI methods
 - Stability analysis

Week 7 (2/28 – 3/2):
- Finite Difference Method for Parabolic Equation continued
- Finite Difference Methods for the 1st order Hyperbolic Equations:
 - The upwind scheme, the Friedrichs scheme, and the Lax-Wendroff scheme

Week 8 (3/7 - 3/9):
- Finite Difference Methods for the 2nd order Hyperbolic Equations
- Finite Element Methods for Two-Point boundary-value problems:
 - The piecewise-linear and higher-order Galerkin methods

Week 9 (3/14 - 3/16): Spring break, No classes

Week 10 (3/21 - 3/23):
- Computer lab
- Individual meeting
Tentative Course Schedule
-Continued

Week 11 (3/28 – 3/30):
- Finite Element Methods for 2-D Elliptic Equations:
 - Abstract finite element theory
- Conforming Finite Element Method

Week 12 (4/4 – 4/6):
- Nonconforming Finite Element Method
- Galerkin methods for the Neumann and the Dirichlet problem

Week 13 (4/11 – 4/13):
- Curved boundaries
- Quadrature rules

Week 14 (4/18 – 4/20):
- Programming Issues –Computer lab
- Finite Element Methods for Parabolic Equations

- Finite Element Methods for Wave Equations
- Mixed Finite Element Methods:
 - Abstract formulation
 - The 2nd order elliptic equations

Week 16 (5/2 – 5/4):
- Mixed Finite Element Methods continued
- Wrap-up the final project

Final week (5/9): Final Project Presentations

Grading Policy: Homework: 50%, Final project: 50%
Attendance Policy: It is student’s responsibility to attend every class. Students are expected to arrive for class on time and to remain for the class entire period.
Academic Integrity Policy: The University policy is that all suspected cases or acts of alleged scholastic dishonesty must be referred to the Dean of Students for investigation and appropriate disposition. Any student who commits an act of scholastic dishonesty is subject to discipline. Scholastic dishonesty includes, but is not limited to cheating, plagiarism, collusion, submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts. For further information, please refer to:

Civility Statement: Please do not use cell phones, pagers, IPods, MP3 players, blue tooth devices, etc. during class. Cell phones and pagers should be set to silent or vibrate, and any calls should be taken outside of class. Please do not wear headsets or blue tooth devices during class.

Disability Statement: If a student has or suspects she/he has a disability and needs an accommodation, he/she should contact the Disabled Student Services Office (DSSO) at 747-5148 or at <dss@utep.edu> or go to Room 106 Union East Building. The student is responsible for presenting to the instructor any DSS accommodation letters and instructions.

Military Statement: If you are a military student with the potential of being called to military service and/or training during the semester, please contact me by the end of the first week of class.
The University of Texas at El Paso is a wonderful institution that easily allows their students to receive a proper education. I have always felt that the staff here has cared deeply for each individual student— including myself. The professors have always been incredibly knowledgeable about the subjects they teach, and kind enough to provide their help for those not grasping concepts so steadily.