Electrochemical Capacitors

Editors:

J. W. Long
Naval Research Laboratory
Washington, DC, USA

C.-C. Hu
National Tsing Hua University
Hsin-Chu, Taiwan

P. Kulesza
University of Warsaw
Warsaw, Poland

P. Simon
Université Paul Sabatier
Toulouse, France

D. Bélanger
University of Québec
Montreal, Québec, Canada

K. B. Kim
Yonsei University
Seoul, South Korea

M. Morita
Yamaguchi University
Ube, Yamaguchi, Japan

W. Sugimoto
Shinshu University
Ueda, Nagano, Japan

T. Brousse
Université de Nantes
Nantes, France

J. M. Ko
Hanbat National University
Taejon, South Korea

K. Naoi
Tokyo University of Agriculture and Technology
Koganei, Tokyo, Japan

Y.-Y. Xia
Fudan University
Shanghai, China

Sponsoring Divisions:

Battery
Physical and Analytical Electrochemistry
Table of Contents

Preface
*i*ii

Chapter 1
Carbon

- Comparative Study of Using Chlorine and Hydrogen Chloride for Synthesis of Titanium Carbide Derived Carbon
 I. Tallo, T. Thomberg, A. Jänes, E. Lust
 3

- Diameter Dependent Doping of Single-Walled Carbon Nanotube Used as Electrical Double Layer Capacitor Electrode
 A. Al-Zubaidi, Y. Ishii, T. Matsushita, S. Kawasaki
 13

- Nitrogen Doped Graphene as a High Efficient Electrode for Next Generation Supercapacitors
 V. Chabot, F. M. Hassan, A. Yu
 19

- Dramatic Improvements in Electric Double-Layer Capacitors by Using Polysaccharides
 M. Yamagata, S. Ikebe, Y. Kasai, K. Soeda, M. Ishikawa
 27

- Three Dimensional Graphene-CNTs Foam Architectures for Electrochemical Capacitors
 W. Wang, S. Guo, I. Ruiz, M. Ozkan, C. S. Ozkan
 37

- Temperature effects in Activated Carbon Supercapacitors
 D. W. Kirk, J. W. Graydon, S. Klas
 45

- Gel-Based Activated Carbon Electrode For Supercapacitors
 V. Jouille, C. Galindo, M. Paté, P. Le Barny, M. Pham Thi
 53
Chapter 2
Pseudocapacitance

Cathodic Synthesis of Birnessite Films for Pseudocapacitor Application
T. Tanimoto, H. Abe, K. Tomono, M. Nakayama

61

Polyaniline-MnO₂ Nanocomposite Supercapacitor Electrodes Prepared by Galvanic Pulse Polymerization
G. P. Pandey, A. C. Rastogi

71

Polypyrrole-Covered MnO₂ as Electrode Material for Hydrid Supercapacitor
A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, C. M. Julien

79

EQCM Investigation on Electrodeposition and Charge Storage Behavior of Birnessite-Type MnO₂
M. Shamoto, T. Tanimoto, K. Tomono, M. Nakayama

85

Tuning Electrolytic Manganese Dioxide for a High-Voltage Aqueous Asymmetric Electrochemical Capacitor

93

Electrochemical Properties of Electrochemical Capacitors Using NiO Electrode

103

Comparative Study of Electrode Stabilization Technique for Graphene-Polyaniline Nanocomposite Electrodes Using Dielectrics for Supercapacitor Applications
S. Ketkar, M. K. Ram, A. Kumar, T. Weller, A. M. Hoff

111

Organic-Inorganic Hybrid Materials for Supercapacitors
V. Ruiz, J. Suarez-Guevara, P. Gomez-Romero

117

Electrochemical Capacitors Based on Nitrogen-Enriched Cobalt (II) Phthalocyanine/Multi-walled Carbon Nanotube Nanocomposites
J. Lekitima, K. I. Ozoemena, N. Kobayashi

125
Chapter 3
Devices and Applications

Development and Evaluation of an Asymmetric Capacitor with a Nickel/Carbon Foam Positive Electrode
B. C. Cornilsen, J. Wang, P. Sasthan Kuttipillai, T. N. Rogers, W. N. Yeo, M. B. Chye, A. Singh Bhatia

Polyacrylonitrile and 1-Ethyl-3-Methylimidazolium Thiocyanate Based Gel Polymer Electrolyte for Solid-State Supercapacitors with Graphene Electrodes
G. P. Pandey, A. C. Rastogi, C. R. Westgate

Novel NaClO₄ and NaPF₆ Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitor Application
A. Laheäär, A. Jänes, E. Lust

N. Nambu, T. Satoh

Advances in Solid Electrochemical Capacitors
K. Lian, H. Gao, H. Wu

Specific Performance of Electrical Double-Layer Capacitors Based on Different Separator Materials and Non-Aqueous Electrolytes
K. Tõnurist, T. Thomberg, A. Jänes, E. Lust

Surface Characterization of Supercapacitor Electrodes after Long-Lasting Constant Current Tests
A. Jänes, J. Eskusson, R. Kanarbik, E. Lust

Testing of MnO₂ Aqueous Hybrid Supercapacitors under Extreme Climatic Conditions
A. J. Roberts, R. C. T. Slade

Electrochemical Capacitor Usable Power for Hybrid Electric Vehicle Applications as Determined from Transient Electrical Response
D. A. Corrigan, C. Fortin, A. Zabik

Thermodynamics in Porous Electrodes: A Monte Carlo Simulation Study
K. Kiyohara, K. Asaka
Development of Solid-State Photo-Supercapacitor by Coupling Dye-Sensitized Solar Cell Utilizing Conducting Polymer Charge Relay with Proton-Conducting Membrane Based Electrochemical Capacitor

Influence of Yttrium Addition on the High Capacitance of ZrO₂-SiO₂ Nanocomposite Anodic Oxide Films
 M. Ishizuka, E. Tsuji, Y. Aoki, A. Hyono, T. Ohtsuka, N. Sakaguchi, S. Nagata, H. Habazaki

Author Index
For electrochemical capacitors of the system carbon-carbon, in spite of the fact that the electrode body consists of conductive activated carbon, it is always necessary to use highly conducive additives, preferably those selected from the group of carbon materials.