Philadelphia University
Faculty of Science
Department of Basic Sciences and Mathematics
First Semester, 2014/2015

Course Syllabus

<table>
<thead>
<tr>
<th>Course Title: Linear Algebra 2</th>
<th>Course code: 250341</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Level: 2</td>
<td>Course prerequisite (s) and/or corequisite (s): Linear Algebra 1</td>
</tr>
<tr>
<td>Lecture Time: Sun,,Tues., and Thursday 09:10 - 10:00</td>
<td>Credit hours:3 credit hours</td>
</tr>
</tbody>
</table>

Academic Staff Specifics

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Office Number and Location</th>
<th>Office Hours</th>
<th>E-mail Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.Rahma aldaqa</td>
<td>Assist.Prof.</td>
<td>818</td>
<td>Sun 10:00-11:00</td>
<td>Raldaqa@philadelphia.edu.jo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mon 09:30-10:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tue 10:00-11:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wed 09:30-10:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thu 10:00-11:00</td>
<td></td>
</tr>
</tbody>
</table>

Course module description:
It includes the study of linear equations, matrix operations, vector space and subspace, eigenvalues and eigenvectors, rotation of coordinate axes, diagonalization, general linear transformations, and inverse transformations.

Course module objectives:
- To enable the students to carry on matrix operations.
- To enable students to solve linear equations using matrices.
- To understand the concepts of vector spaces.
- To understand eigenvectors and eigenvalues and systems of linear equations.
- To carry on transformations and inverse transformations.
Course/ module components

Text Book
Title: Elementary Linear Algebra 9th Edition.
Author: Howard Anton
Publisher: Wiley 2003

- Support material (s) (vcs, acs, etc).
- Study guide (s) (if applicable)
- Homework and laboratory guide (s) if (applicable).

Teaching methods:
Lectures, discussion groups, tutorials, problem solving, debates, etc.

Learning outcomes:
- Knowledge and understanding
 Understanding of the concepts of vectors and linear algebra.
- Cognitive skills (thinking and analysis).
 Applying the principles of systems of linear equations and matrices in some real world problems
- Communication skills (personal and academic).
 Scientific thinking and applications develops communication skills
- Practical and subject specific skills (Transferable Skills).
 Applying the concepts of linear algebra in simple experiments

Assessment instruments
- Short reports and/ or presentations, and/ or Short research projects.
- Quizzes.
- Home works.
- Final examination: 40 marks

<table>
<thead>
<tr>
<th>Allocation of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Instruments</td>
</tr>
<tr>
<td>First examination</td>
</tr>
<tr>
<td>Second examination</td>
</tr>
<tr>
<td>Final examination: 50 marks</td>
</tr>
<tr>
<td>Reports, research projects, Quizzes, Home works, Projects</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Documentation and academic honesty
- Documentation style (with illustrative examples)
- Protection by copyright
- Avoiding plagiarism

Course/module academic calendar

<table>
<thead>
<tr>
<th>Week</th>
<th>Basic and support material to be covered</th>
<th>Homework/reports and Their due dates</th>
</tr>
</thead>
</table>
| (1) | CH01: System Of Linear Equations And Matrices
- Introduction to systems of linear equations
- Gaussian elimination
- Matrices and matrix operations
- Inverses, Rules of matrix arithmetic | Homework Ex 1.1,1.2,1.3,1.4 |
| (2) |
- Elementary matrices and a method for finding A^{-1}
- Further results on systems of equations and invertibility
- Diagonal, Triangular, and Symmetric Matrices | Homework Ex 1.5,1.6,1.7 |
| (3) | Ch02: Determinants
- Determinants by Cofactor Expansion
- Evaluating Determinants by Row Reduction | Homework Ex 2.1,2.2 |
| (4) |
- Properties of the Determinant Function
- A combinatorial Approach to Determinants | Homework Ex 2.3,2.4 |
| (5) | CH05: General Vector Spaces
- Real vector spaces
- Subspaces | Homework Ex 5.1,5.2, reports |
| (6) | First examination
- Linear independence
- Basis and dimension | Homework Ex 5.3,5.4 |
| (7) |
- Row Space, Column Space, and Null Space
- Rank and Nullity | Homework Ex 5.5,5.6 |
| (8) | Ch06: Inner Product Space
- Inner Products
- Angle and Orthogonality in Inner Product Spaces | Homework Ex 6.1,6.2 |
| (9) |
- Orthonormal Bases; Gram Schmidt process | Homework Ex 6.3, some reports |
| (10) | Ch07: Eigenvalues and Eigenvectors
- Eigenvalues and eigenvectors | Homework Ex 7.1 |
| (11) | Second examination
- Diagonalization
- Powers of a matrix | Homework Ex 7.2 |
| (12) | Ch08: Linear Transformations
- General Linear Transformations | Homework Ex 8.1 |
| (13) |
- Kernel and Range | Homework Ex 8.2 |
| (14) |
- Inverse Linear Transformations | Homework Ex 8.3 |
| (15) | Specimen examination (Optional)
- Matrices of Linear Transformations | Homework Ex 8.4, reports |
| (16) | Final Examination | Review and Exercises |
Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references:

Books:

- Linear Algebra and its applications by Howard Anton _Addison Wesley 2002.
- Linear Algebra by Eric Carlen_ Freeman 2007
- Linear Algebra and its applications by Gilbert Srang _Belmont,CA 2006

Journals:

- www.math.technion.ac.il
- www.elsevier.com/wps/find/journaldescription.cws-home
- www.ilasic.math.uregina.ca/iic/journal

Websites:

- www.numbertheory.org/book
- http://en.wikipedia.org/wiki/Linear-algebra…..(several links and text books)