Contents

Part One

CMB INSTRUMENTS I

10708 05 BFORE: a CMB balloon payload to measure reionization, neutrino mass, and cosmic inflation [10708-4]
10708 06 The primordial inflation polarization explorer (PIPER): current status and performance of the first flight [10708-5]
10708 07 BICEP Array: a multi-frequency degree-scale CMB polarimeter [10708-49]

OPTICS I

10708 0D Development of large-diameter flat mesh-lenses for millimetre wave instrumentation [10708-11]
10708 0E Design and development of a polarization modulator unit based on a continuous rotating half-wave plate for LiteBIRD [10708-12]
10708 0F Aerogel scattering filters for cosmic microwave background observations [10708-13]
10708 0G Metamaterial-based Toraldo pupils for super-resolution at millimetre wavelengths [10708-14]

SUBMM/FIR CAMERAS

10708 0J Optical design of the TolTEC millimeter-wave camera [10708-17]
10708 0K The SAFARI detector system [10708-18]
10708 0L Preflight characterization of the BLAST-TNG receiver and detector arrays [10708-19]
10708 0M MUSCAT: the Mexico-UK Sub-Millimetre Camera for AsTronomy [10708-20]
COHERENT DETECTION I

10708 0Y Evaluation of controllers for tuning digitizers in the ALMA interferometer [10708-32]
10708 0Z 4×2 HEB receiver at 4.7 THz for GUSTO [10708-33]
10708 12 Technical achievements of the ALMA future receiver development program at the National Astronomical Observatory of Japan [10708-36]

COHERENT DETECTION II

10708 13 A proposal of a photonic local system for the extended Atacama large millimeter/submillimeter array and advanced radio interferometers [10708-37]
10708 14 Planar superconductor-insulator-superconductor mixer array receivers for wide field of view astronomical observation [10708-38]
10708 15 GLT receiver commissioning at JCMT and future JCMT instrumentation [10708-39]
10708 16 Electronics instrumentation for the Greenland telescope [10708-40]

MULTIPLEXED READOUT

10708 1D Digital frequency multiplexing with sub-Kelvin SQUIDs [10708-47]

CMB INSTRUMENTS II

10708 1G The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds [10708-50]

SUBMM/FIR SPECTROMETERS II

10708 1O The design and characterization of a 300 channel, optimized full-band millimeter filterbank for science with SuperSpec [10708-58]

NEW DEVELOPMENTS

10708 1U Prime-Cam: a first-light instrument for the CCAT-prime telescope [10708-64]
10708 1V Development of a robust, efficient process to produce scalable, superconducting kilopixel far-IR detector arrays [10708-65]

10708 1W Ultra-low-noise transition edge sensors for far infrared wavelengths: optical design, measurement and stray light control [10708-66]

10708 1X Eliminating stray radiation inside large area imaging arrays [10708-67]

POSTER SESSION: CMB DETECTORS I

10708 1Y Design and characterization of the Cosmology Large Angular Scale Surveyor (CLASS) 93 GHz focal plane [10708-68]

POSTER SESSION: CMB INSTRUMENTS I

10708 27 Cooldown strategies and transient thermal simulations for the Simons Observatory [10708-77]

10708 2B The Cosmology Large Angular Scale Surveyor receiver design [10708-78]

10708 29 Simons Observatory large aperture telescope receiver design overview [10708-79]

10708 2A Design and characterization of a ground-based absolute polarization calibrator for use with polarization sensitive CMB experiments [10708-80]

10708 2B QUBIC: the Q and U bolometric interferometer for cosmology [10708-81]

10708 2D BICEP array cryostat and mount design [10708-83]

10708 2E High-precision scanning water vapor radiometers for cosmic microwave background site characterization and comparison [10708-84]

10708 2F Preliminary scanning strategy analysis for the LSPE-STRIP instrument [10708-85]

POSTER SESSION: OPTICS I

10708 2G Design and performance of wide-band corrugated walls for the BICEP Array detector modules at 30/40 GHz [10708-86]

10708 2H Next generation sub-millimetre wave focal plane array coupling concepts: an ESA TRP project to develop multi-chroic focal plane pixels for future CMB polarisation experiments [10708-87]

10708 2I Simulations and performance of the QUBIC optical beam combiner [10708-88]
<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>Ultra-thin large-aperture vacuum windows for millimeter wavelengths receivers</td>
<td>[10708-90]</td>
</tr>
<tr>
<td>2M</td>
<td>Variable-delay polarization modulators for the CLASS telescopes</td>
<td>[10708-92]</td>
</tr>
<tr>
<td>2N</td>
<td>2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization</td>
<td>[10708-93]</td>
</tr>
<tr>
<td>2P</td>
<td>SiAl alloy feedhorn arrays: material properties, feedhorn design, and astrophysical applications</td>
<td>[10708-146]</td>
</tr>
</tbody>
</table>

POSTER SESSION: COHERENT DETECTION

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2R</td>
<td>Analysis techniques for complex field radiation pattern measurements</td>
<td>[10708-96]</td>
</tr>
<tr>
<td>2S</td>
<td>A VLBI receiving system for the South Pole Telescope</td>
<td>[10708-97]</td>
</tr>
<tr>
<td>2U</td>
<td>Low-power CMOS digital electronics for radio, mm-wave and sub-mm astrophysics</td>
<td>[10708-99]</td>
</tr>
<tr>
<td>2V</td>
<td>The new heterodyne receiver system for the ASTE radio telescope: three-cartridge cryostat with two cartridge-type superconducting receivers</td>
<td>[10708-100]</td>
</tr>
<tr>
<td>2X</td>
<td>Development of a low-power cryogenic MMIC HEMT amplifier for heterodyne array receiver application</td>
<td>[10708-102]</td>
</tr>
<tr>
<td>32</td>
<td>Q-band single pixel receiver development for the ngVLA and NRC</td>
<td>[10708-36]</td>
</tr>
<tr>
<td>33</td>
<td>Performance of pre-production band 1 receiver for the Atacama Large Millimeter/submillimeter Array (ALMA)</td>
<td>[10708-46]</td>
</tr>
<tr>
<td>34</td>
<td>A digital beamformer for the advanced focal array demonstrator (AFAD)</td>
<td>[10708-58]</td>
</tr>
<tr>
<td>35</td>
<td>The first-light receivers for the Greenland Telescope</td>
<td>[10708-149]</td>
</tr>
<tr>
<td>36</td>
<td>Progress in the construction and testing of the Tianlai radio interferometers</td>
<td>[10708-150]</td>
</tr>
<tr>
<td>37</td>
<td>Overview of the East Asia ALMA development program</td>
<td>[10708-152]</td>
</tr>
</tbody>
</table>

POSTER SESSION: FIR CAMERAS

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Latest results and prospects of the ArTeMiS camera on APEX</td>
<td>[10708-107]</td>
</tr>
</tbody>
</table>
Upgrading SCUBA-2 with a newly designed thermal filter stack [10708-108]

POSTER SESSION: FIR DETECTORS

Revisiting the optimization of the SCUBA-2 TES arrays for POL-2 and FTS-2 operations [10708-111]

POSTER SESSION: FIR SPECTROSCOPY

TIME millimeter wave grating spectrometer [10708-114]
The optical design of a far infrared spectrometer for SPICA: grating modules evaluation [10708-115]

POSTER SESSION: OPTICS II

Use of evolutionary computing algorithms in the design of millimetre-wave metamaterial devices [10708-116]
Fabrication and characterization of a NIR-FIR dichroic for the infrared interferometer BETTII [10708-117]
Characterizing and reducing the POL-2 instrumental polarization [10708-121]

POSTER SESSION: CMB DETECTORS II

Fabrication and characterization of cooled silicon bolometers for mm wave detection [10708-123]

POSTER SESSION: CMB INSTRUMENTS II

Systematic error cancellation for the PIXIE four-port interferometric polarimeter [10708-129]
Thermal architecture for the QUBIC cryogenic receiver [10708-130]
Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers [10708-131]
Simons Observatory large aperture receiver simulation overview [10708-132]
10708 3Z Studies of systematic uncertainties for Simons Observatory: detector array effects [10708-134]

10708 40 Development of calibration strategies for the Simons Observatory [10708-135]

10708 41 Designs for next generation CMB survey strategies from Chile [10708-136]

10708 42 BoloCalc: a sensitivity calculator for the design of Simons Observatory [10708-137]

10708 43 Broadband anti-reflective coatings for cosmic microwave background experiments [10708-138]

POSTER SESSION: MULTIPLYING

10708 44 The FDM readout for the LSPE/SWIPE TES bolometers [10708-139]

10708 45 Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment [10708-140]

10708 46 Investigation of magnetic shielding for superconducting readout [10708-141]

POSTER SESSION: OPTICS III

10708 47 Prototype design and evaluation of the nine-layer achromatic half-wave plate for the LiteBIRD low frequency telescope [10708-142]

10708 49 Cross-polarization systematics due to Mizuguchi-Dragone condition breaking by a continuously rotating half-wave plate at prime focus in the Huan Tran telescope [10708-144]

10708 4A Multi-octave anti-reflective coating for polypropylene-based quasi-optical devices [10708-145]

10708 4B Feedhorn development and scalability for Simons Observatory and beyond [10708-147]
Instrumentation for extreme ultraviolet astronomy. January 1978. F. Paresce. Design considerations for instruments intended for EUV astronomy from space are discussed. The ability of an optical system to detect and measure the brightness of an object is examined, options available for mirror design in the EUV are summarized, and two telescope configurations selected for flight are noted.

Submillimeter and Far-Infrared Polarimetric Observations of Magnetic Fields in Star-Forming Regions. Kate Pattle 1* and Laura Fissel 2. Stellar and Solar Physics, a section of the journal. Frontiers in Astronomy and Space Sciences. Received: 02 October 2018 Accepted: 01 March 2019 Published: 05 April 2019. We summarize past, present and forthcoming single-dish instrumentation, and discuss techniques which have been developed or proposed to interpret polarization observations, both in order to infer the morphology and strength of the magnetic field, and in order to determine the environments in which dust polarization observations reliably trace the magnetic field.