GRACE HOPPER AND THE INVENTION OF THE INFORMATION AGE

KURT BEYER
INDEX

Adams, Charlie, 263
Aiken, Howard, 73–75
and AMC, 169
and Babbage, 130, 136
and Bloch, 86
and computer community, 141–143
and Harvard Computation Laboratory, 74–88, 92–95
and Harvard Symposium, 143–145, 149, 150, 156–163
and Hopper, 4, 84, 85, 95, 170
and IBM, 109
leadership style, 73, 80–86, 94
and Mark I, 36–43, 55, 63, 64, 68, 74–79, 90, 109, 133, 134, 139, 140
and Mark II, 157–159
and Mark III, 100–103
and Watson, 135
AIMACO, 290, 292
Alcoholism, Hopper’s, 6, 175–177, 204–207
American Totalisator, 186, 187, 200
Analytical Engine, 128, 129
Arnold, Hubert, 86, 87
Asch, Alfred, 292
Asprey, Winifred, 28
Association for Computing Machinery (ACM), 7, 163–171, 278, 279, 319, 320
ATLAS, 172
Automatic programming, 234–246, 261–268
acceptance, 289
benefits, 223, 224, 275
Hopper and, 10, 221–225, 242–246
Automatic Programming Department, 265–267
Automatic Sequence Controlled Calculator. See Mark I
Automatic sequential control, 121
B-0 language, 270–274
Babbage, Richard, 145–149, 157, 162
Backus, John, 5, 242, 263, 264, 267–270
Ballistics Research Laboratory (BRL), 117, 118, 189
Barnard College, 31
Bartik, Betty “Jean” Jennings, 5, 190, 191, 218, 219
Bemer, Robert, 281
Berkeley, Edmund, 94, 164–169, 177, 204–207
Binary Automatic Computer (BINAC), 172, 186, 196
Biography, 18–22
Bloch, Richard
and Aiken, 81, 86, 160
and coding innovations, 97–100
at Harvard Computation Laboratory, 7, 8, 40–43
and Harvard Symposium, 150, 151
and Mark I, 49, 53, 56–63, 72
at Raytheon, 163
and von Neumann, 115, 116
Branching, 99, 100, 151
Bromberg, Howard, 281, 294, 295, 301
Bugs, 64–72
Burns, Robert, 80, 84
Bush, Vannevar, 51, 108, 119
Cambridge University Mathematics Laboratory, 96, 97, 103, 197, 198
Campbell, Robert, 7, 8
and Aiken, 160
and Mark I, 40, 41, 53, 66, 123, 124
at Raytheon, 162, 163
Census Bureau, 185, 186, 219
Chaffee, Emory L., 114
Charles Babbage Institute, 12, 14
Circuits, 201, 202
COBOL (Common Business Oriented Language)
Hopper and, 303–309
invention, 280–292, 320, 321
specifications, 288–292
spread, 304–307
standardization, 292–300, 307–310
success, 300–304
Code
C-10, 193–196, 212
documentation, 16, 63
machine, 193–196, 266, 267
pseudo-, 233–235, 265, 266, 271–275
source, 266, 267, 270–272
Coding, relative, 98–101
Coding sheets, 70, 71
Cold War, 255–261
Columbia University Statistical Bureau, 132, 133
Commonwealth Edison, 219
Compilers, 11, 16, 314
Editing generator, 239, 314
EDSAC (Electronic Delay
Storage Automatic Computer),
65, 66, 97, 105, 197
“Education of a Computer, The”
(Hopper), 220–225
EDVAC (Electronic Discrete
Variable Automatic
Computer), 121, 181, 182
Electronic Control Company,
166, 181
Emergency Price Control Act
and Stabilization Act, 24
Engineering Research Associates
(ERA), 171, 172, 253
Engstrom, Howard, 35, 171, 172
ENIAC (Electronic Numerical
Integrator and Computer), 8,
9, 15, 51, 52, 61, 69, 108,
118–122, 151, 152, 190, 191,
202, 203
Errors
computational, 55, 56
round-off, 55, 56
FACT (Fully Automatic
Compiling Technique),
293–297
“First Draft of a Report on the
EDVAC” (von Neumann),
111–113, 116–122, 152, 181,
182
Flow charts, 192, 193
FLOW-MATIC, 274, 275,
291–296
Forrester, Jay, 256–258
FORTRAN, 267–270, 295
Gender issues, 211, 212
Giddens, Anthony, 21
Goheen, Harry, 93–95, 165–167
Goldstine, Herman, 111–113,
117–120, 182, 193
Gorn, Saul, 281
Grace Murray Hopper Center, 2
Grosch, Herbert, 241
Groves, Leslie, 210, 216, 217, 257
Hacking, 63
Hammer, Carl, 240, 241
Harvard Computation
Laboratory, 4, 9, 10, 17,
39–43, 53
Aiken and, 73–88, 92–95
Berkeley and, 164, 165
computer community and,
141–143
Hopper at, 81, 87, 88, 95,
169–177
humor at, 84, 85
isolation, 107–111
postwar environment, 92–95
pressures, 176, 177
public relations, 140
talent migration from, 161–163
wartime culture and, 89–91,
176
Harvard Symposium on Large-
Scale Digital Calculating
Machinery, 143–163
Harvard University, 12, 141
Hawkings, Bob, 45
History of Programming
Languages Conference, 7, 12, 13
Holberton, Betty (Snyder), 5, 187–194, 199, 209–212, 236, 288, 303, 304. See also Snyder, Betty
Holberton, John, 211, 212
Hollerith, Herman, 185
Honeywell, 293–297
Hopper, Vincent, 25, 26, 30, 31
Hughes, Thomas, 19
IBM (International Business Machines), 185
Aiken and, 109
antitrust lawsuit against, 248, 249
COBOL and, 292–295, 302, 303
computers, 258, 259
culture at, 5, 172
ey early computer industry and, 247–261
EMCC and, 201–204
Mark I and, 132–137, 148
SAGE and, 255–261
Seeber and, 85
Implosion, 99, 114–116, 239, 240
Innovation, 90, 91, 95–106
Input/output mechanisms, 184
Instructional Tape Preparation Table, 101, 103
Internal memory, 9, 100, 101, 121, 152, 183, 184, 266
Interpreters, 234, 235
Interviews, 16–18
Invention, 213, 214, 314–319
distributed, 11, 225–232, 317, 318
simultaneous, 103–106
Investment capital, 184–187
Jacquard, Joseph, 128
Joy, C. Turner, 148, 149
Kahrimanian, Harry, 239, 240, 315
Koss, Adele Mildred, 219, 239, 314, 315
Laniung, J. Halcombe, Jr., 263, 264
Leibniz, Gottfried Wilhelm von, 126, 127
Leontief, Wassily, 150
Livingston, Hugh, 196
Lovelace, Ada, 128–130
Manhattan Project, 113, 114
Manual of Operation for the Automatic Sequence Controlled Calculator (Hopper), 123–130, 137–140
Mark I (Automatic Sequence Controlled Calculator), 7, 9
Aiken and, 36–43, 55, 63, 64, 68, 74–79, 90, 109, 133, 134, 139, 140
bugs, 66–72
commercial potential, 90, 91
design, 45–51, 90
Hopper and, 87, 88
IBM narrative, 132–137
manual for, 123–130, 137–140
operating instructions, 57, 58
output, 60, 61
performance, 144, 148
postwar environment and, 92–95
processing speed, 62–64, 115
programming, 47–49, 53–62, 70–72
subroutines, 96
testing, 59, 60
von Neumann and, 111–116
Mark II, 7, 53, 90, 93, 147, 148, 157–159, 184
Mark III, 93, 100–103, 214, 221, 222
Marriage, 25, 26, 31
Massachusetts Institute of Technology (MIT), 108, 109, 255–258
Mathematical functions, 50
Mathematical models, 150
Mathematics, 15, 16, 25, 28
MATH-MATIC, 266, 267
Mauchly, John
and ACM, 166, 167
and EDVAC, 181–183
and EMCC, 173, 177–181, 199–201
and ENIAC, 51, 52, 69, 118
and “First Draft,” 111, 112
and IBM, 201–204
and Remington Rand, 210–212, 217
and UNIVAC, 184–187
McAfee, Mildred, 32
Mealey, Marilyn, 311–313
Memory, 151, 158, 257
Mercury delay lines, 158, 159, 183
Microsoft, 6
Midshipmen’s School, 32–34
Mitchell, Herbert, 196, 218
Mitchell, Maria, 26
Morton, Paul, 158
Moser, Nora, 237
Murray, Roger, 31
National Bureau of Standards, 186
National Museum of American History, 12, 13, 16
Naval Data Automation Headquarters (NAVDAC), 322–324
Navy, 3, 4, 32–43, 322–324
Navy Communications Annex, 35
Navy Programming Languages Group, 322
Navy Women’s Reserve Act, 31
Nelson, D. A., 298
Nomenclature Committee, 278, 279, 320
Nutt, Roy, 293
Nye, David, 20
Operating instructions, 57, 58, 71, 102
Operators, 56, 57
Oppenheimer, J. Robert, 73
Oral histories, 13–18

Pacific Mutual Insurance Company, 251, 252
Palmer, Ralph, 203
Partial differential equations, 30, 55
Pascal, Blaise, 126
Pearl Harbor, 3, 23, 24, 31
Personal difficulties, Hopper’s, 5, 6, 31, 175, 176, 204–207
Phillips, Charles, 280–284, 302, 303
Primary sources, 12–14
Problem-oriented languages, 263–275
Professor, Hopper as, 25–32
Programmers shortage, 254, 255
training, 196, 197, 264, 265, 319
Programming, 62
costs, 244, 245, 265, 282, 284
history, 313, 314
innovations, 90, 91, 95–106
as invention, 6–12
Mark I, 47–49, 53–66, 70–72
techniques, 7, 8
Programs, portability of, 283, 284
Project Whirlwind, 256–259, 263
Punch cards, 201, 202, 209
RAND Corporation, 261
Rand, James, 208, 209
Random-access memory (RAM), 158, 257, 258
RAYDAC, 163
Raytheon Manufacturing Company, 162, 163
RCA, 294–296
Relay technology, 68, 69, 90, 147, 158–160
Remington Rand Corporation, 5
Hopper and, 11, 219, 220, 254
IBM and, 247–261
management, 242–246
purchase of EMCC by, 208–212, 216–220
sales and support for UNIVAC at, 216–220, 252–254
UNIVAC and, 249–254
Retirement, Hopper in, 322–324
Reynolds, Edward, 148
Richards, Ellen Swallow, 26
Ridgway, Richard, 225–229
Run-programs, 226
60 Minutes interview, of Hopper, 1, 2
604 Electronic Calculator, 203
SAGE (Semi-Automatic Ground Environment), 255–261
Sammet, Jean, 7, 289, 290, 294
Saunders, Frederick, 75, 76
Savage, David, 217
Schell, Emil, 236
Seeber, Robert, 85
Selective Sequence Electronic Calculator, 85
Shapley, Harlow, 76, 78
Smith, Eugene, 283
Smith, Gertrude, 28–39
Smithsonian Institution, 12, 13, 16
 See also Holberton, Betty (Snyder)
Social constructivism, 19–21
Software development, 6
Sorting, binary, 198, 199
Sort-merge generator, 198–202
Sperry Rand, 274, 290, 291
Stibitz, George, 69
Storage technology, 158, 159
Stored-program architecture, 120, 121, 152, 192, 193
Straus, Henry, 186, 187, 199–201
Subroutines, 96–106, 195, 196, 222, 223, 228–235
Suicide threats, Hopper’s, 206, 207
Tapes
data, 59
magnetic, 184, 198–204
sequence, 59
Teaching career, Hopper’s, 26–30
Technology, history of, 18–22
Travis, Irvin, 181
Turing, Alan, 107
UNIVAC, 105, 172, 181–184
C-10 code and, 193–196
demand for, 251–254
design, 183–184, 198, 199
and Eisenhower-Stevenson election, 249–251
investment capital for, 184–187, 200–204
Remington Rand and, 208–212
sales and support for, 216–220, 252–254
University of Pennsylvania, 8
USS Grace Hopper, 2
Vacuum tubes, 69, 90
Vassar College, 25–32
von Neumann architecture, 9
von Neumann, John, 8, 9, 96, 104
and AMC, 168, 169
and flow charts, 193
and Harvard Symposium, 153, 154
and Mark I, 111–116
War Powers Act, 24
Watson, Thomas, Jr., 201–203, 256–259
Watson, Thomas, Sr., 109, 135, 172, 185, 201, 202
WAVES (Women Accepted for Volunteer Emergency Service), 31, 32
Weaver, Warren, 77
Wheeler, David, 97
Wiener, Norbert, 152, 153
Wilkes, Maurice, 64, 65, 83, 84, 96, 97, 104–106, 157, 197, 198
Women, career opportunities for, 3–5

Zierler, Neal, 263, 264
Grace Hopper and the Inve has been added to your Cart. Add to Cart. Buy Now. Hopper's work to convene the CODASYL group was the first of a long line of standards efforts (including ICANN and the rest of the Internet infrastructure) without which the Information Age would have withered for lack of cross-enterprise fertilization. Read more. 34 people found this helpful. The career of computer visionary Grace Murray Hopper, whose innovative work in programming laid the foundations for the user-friendliness of today's personal computers that sparked the information age. A Hollywood biopic about the life of computer pioneer Grace Murray Hopper (1906–1992) would go like this: a young professor abandons the ivy-covered walls of academia to serve her country in the Navy after Pearl Harbor and finds herself on the front lines of the computer revolution. She works hard to succeed in the all-male computer industry, is almost brought down by personal problems but