attention of anyone with an interest in spherical trigonometry (a topic that finally seems to be making its comeback in college geometry teaching).

Eisso J. Atzema

10.1016/j.hm.2003.07.005

From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931

On April 1, 1967, a bibliographic note dealing with van Heijenoort’s Source Book, in the Library Journal, ended with the following words: “this book will long remain a standard work, essential to the study of symbolic logic.” This was obviously an overstatement, but easy to correct by inserting three words—From Frege to Gödel has been and remains an essential tool in the study of the history of mathematical logic, and even more, for the history and philosophy of logic and foundational research. As Quine said:

[Van Heijenoort] made a contribution to mathematical logic that was second only to what Alonzo Church had contributed in molding the Journal of Symbolic Logic itself. . . . For us it was a boon just to have these papers brought together, to have xeroxes in our hands of the original German. But then, he did these painstaking translations and painstaking commentaries . . . a collaborative job, but very largely Van’s own work.¹

Thus, it should not come as a surprise that this source book has been reissued, after 35 years! There are many reasons to welcome the new paperback edition, not least the low price, making it accessible to interested students and to libraries throughout the world.

I believe everyone who cares about the topics mentioned above already knows and values highly van Heijenoort’s achievement. The book did more than collect and make available to the English-speaking public an impressively wide range of key works, in translations of very high quality. From Frege to Gödel contributed to establishing higher standards for editorial work in collections on logic and mathematics, as witnessed, e.g., by the Collected Works of Kurt Gödel, explicitly modeled upon its example.² Particularly noticeable is the quality of the editorial notes that introduce each paper, always clear, deep, and yet concise. These were written by leading logicians and philosophers such as Quine, Wang, Dreben, and Parsons, besides the editor himself.

The person responsible for producing this huge, admirable work was a professor of philosophy at Brandeis University. There was more than met the eye behind his modest appearance, because Jean van Heijenoort (1912–1986) had been intensely involved not only in logic, but also—to use his biographer’s phrase—in politics and love.³ For seven years he was personal secretary and bodyguard to Leon Trotsky, following him from France to Mexico through Turkey. In 1939 van Heijenoort settled in the United State, and after Trotsky’s assassination and the war he went back to his first love, mathematics, doing graduate

¹ Quoted in Feferman [1993, 281].
³ See the delightful biography by A. Feferman [1993].
studies and becoming especially interested in mathematical logic. Love was particularly implicated in his
death, as he was shot in the head by his fifth wife, near her home town of Cuernavaca in Mexico.

Van Heijenoort had strong ties to the influential school of logicians and philosophers at Harvard
University. It was through them that he was appointed editor of the Source Book, they assisted him
in its production, and it is a safe assumption that they heavily influenced his conception of logic and his
selection of material. The plan to publish a logic anthology in the Harvard series Source Books in the
History of Science began with Quine and Dreben in 1959. Dreben happened to know van Heijenoort and
was aware of his deep interest in the development of logic. By then, van Heijenoort had independently
come to think about editing a collection of seminal logic papers, and his passion for exactitude and
knowledge of languages were obvious bonuses. After meeting Quine and Harvard University Press, still
in 1959, he was recruited as editor.

Obviously any selection must have its biases, and also its history. Let us examine them in turn,
beginning with a few words on the figures just mentioned. There is little need to introduce W.V.O.
Quine (1908–2000), the extremely influential analytical philosopher who began his career working with
Whitehead and learning from Carnap. Quine’s initial work was in mathematical logic, developing two
original systems that offered an alternative to Russell’s theory of types (and therefore to set theory), and
later championing first-order logic as “the one” system of elementary logic.\(^4\) He was the senior man on
van Heijenoort’s advisory board. Burton Dreben (1927–1999) is well known to Quineans, if only because
his name is present in the acknowledgements of almost all of Quine’s books and papers. A member of
the Society of Fellows at Harvard in 1952–1955 (as Quine was in the 1930s), he taught at the University
thereafter. He wrote little, being mainly interested in proof theory and especially in the work of the French
logician Herbrand. But Dreben kept a deep interest in the history of foundations, logic, and analytical
philosophy, being quite influential in these three fields indirectly, through personal contacts. There are
indications that he may have been very intensely involved in the Source Book project. Dreben not only
enlisted van Heijenoort, but collaborated closely in making the selections and polishing translations and
introductions.\(^5\)

Van Heijenoort’s preface made it clear that the Source Book was targeted at three main foci, one
being modern symbolic logic, the other, two fields which “emerged on the borders of logic, mathematics
and philosophy,” namely set theory and the foundations of mathematics.\(^6\) In this triangle, logic formed
the longest side, and it conditioned the dimensions and aspect of the remaining two. Van Heijenoort’s
selection emphasized those aspects of foundations and set theory that are intimately linked with formal
logic, while it clearly downplayed the mathematical and philosophical aspects. In the case of set theory,
the papers included deal only with basic principles and the main axiom systems, while properly set-
theoretical developments are conspicuously absent. This one-sided approach was a sensible one, given
limitations of space and the main focus of the volume. With that feature in mind, one can easily

\(^4\) See Ferreirós [1997], which analyzes Quine’s path from logicism to first-order logic.

\(^5\) G. Hellman reminisces that, while lecturing, van Heijenoort once referred to the Source Book as a joint project with Dreben
(personal communication). According to W. Goldfarb (personal communication), Dreben’s files contain typescript copies of
most of the translations, some in several versions. Goldfarb seems to believe that Dreben was an uncredited co-editor (for the
straight reason that he preferred to remain in the dark, free from the drudgery of editing).

\(^6\) p. vi; notice the very Quinean characterization of set theory.
understand some differences between the book under review and the more recent anthologies *From Kant to Hilbert* (1996) and *From Brouwer to Hilbert* (1998).\(^7\)

The original plan was two volumes, the first to span the period from Frege’s *Begriffsschrift* to Gödel’s celebrated paper, the second from thence “to the present.”\(^8\) Van Heijenoort optimistically thought that the editorial work would be done in 6 months, but he ended up working “terribly hard, under heavy pressure, for seven years.”\(^9\) He enlisted three collaborators for the task of translating, including Stefan Bauer-Mengelberg, who translated 28 out of the total of 46 papers, working on them “almost full time” for 6 years. The care with which they discussed every imaginable detail in the translations, dug up additional sources, and analyzed them all to produce high-quality introductions and explanatory footnotes, was the reason for the heavy pressure. The outcome was the impressive first volume, but the projected second never came into being.

To some extent, the very success of *From Frege to Gödel* has been the source of criticism directed against it. Van Heijenoort’s volume never intended to represent the complex historical development of logic from 1879 to 1931. “Encyclopedic completeness” was precluded if only because the “main constraint” was that the outcome had to be a single volume (p. vi). Yet it was so representative of this history that many of us have wondered why the book excludes some chapters.\(^10\) It must be acknowledged that such a criticism is unfair, but at the same time one must warn readers of this anthology that, if they are looking for a complete picture of the historical emergence of mathematical logic, they must complement *From Frege to Gödel* with other anthologies, original treatises, textbooks, and secondary sources.\(^11\)

One obvious bias, which can only be expected in such an anthology, is that the vista displayed before us is clearly whiggish. This could only be a selection of successes, excluding programmatic work, dead ends, and influential confusions.\(^12\) It may be for these reasons that important authors such as Frank Ramsey and Leon Chwistek are absent (both contributed very much to simplifying type theory). Also absent are all members of the very important Polish school in logic, counting Sierpinski, Lukasiewicz, Tarski, Lindenbaum, and others among its members, and Hermann Weyl’s seminal work in predicative foundations (*Das Kontinuum*, 1918). The reason for this last omission is likely to be that the interest of predicative approaches to foundations was lost from sight for many years and that the editors ignored the historical significance of Weyl’s work.\(^13\)

A very important source for probing the state of development of logic, both in its main body and, particularly, in the changing images that researchers project of the enterprise, can be found in comprehensive treatises and textbooks. Three key examples, which complement van Heijenoort’s source book informatively, are Schröder’s *Vorlesungen über die Algebra der Logik* (3 vols., 1890–1895), Whitehead and Russell’s *Principia Mathematica* (3 vols., 1910–1913), and Hilbert and Ackermann’s

7 Ewald [1996]; Mancosu [1998]. The titles make it clear that the source book under review has played an exemplary role.
8 See van Heijenoort’s letters to Gödel in Feferman et al. [1986/1990], vol. IV (forthcoming), and the introduction by Goldfarb (who kindly made it available to me).
9 Quoted in Feferman [1993, 275; see also 274–282].
10 See the reviews by Mostowski [1968] and above all by Moore in this journal [1977].
12 A relevant example of the last category is Wittgenstein’s famous *Tractatus*, whose conception of logic is remote from modern mathematical logic.
13 See the reviewer’s [Ferreirós, 1999, Chapter X].
Grundzüge der theoretischen Logik (1928). In spite of the legendary stature of *Principia Mathematica*, only Hilbert and Ackermann’s *Grundzüge* can be regarded as the first modern presentation of mathematical logic, for only here does one find a stern formal approach to logical systems plus the all-important focus on metatheoretical questions.

At the time of Ernst Schröder’s lectures, most of mathematical logic was in the algebraic tradition of Boole and Peirce, but this is absent from the Source Book. A conspicuous characteristic of logical systems around that time is that they routinely include set theory as a core part of elementary logic. This would change radically with the discovery of the paradoxes. Contemporaneous with Schröder were the forward-looking contributions of Frege and Peano. Frege introduced the very idea of a formal system, and many years later Gödel would rightly emphasize that Whitehead and Russell’s treatment of their system represents “a considerable step backwards as compared with Frege.”\(^{14}\) Note that Frege’s key works appeared 30 and 20 years before *Principia Mathematica*! Nevertheless, *Principia* marked an epoch in the development of logical theory and left strong traces in many authors. It was an impressively detailed treatise, which developed much of mathematics in the symbolic language of logic, starting with a plausible solution to the paradoxes that for some time seemed sufficient to rescue the logicist project. During the 1920s, Russell’s type theory was generally regarded as the “natural” system of logic.\(^ {15}\) But neither Russell nor Frege encouraged the metatheoretical study of logical systems, a fact reflected upon by van Heijenoort in a famous short paper [1967]. Interest in metalogic came from the algebraists in Schröder’s tradition (Löwenheim in particular, whose work the Source Book did much to call attention to) and from the Hilbert tradition in axiomatics. All of these crucial threads were tied and further developed in the work of Hilbert and his school during the 1920s, without which the decisive contributions of Gödel, Tarski, and Turing would have been impossible.

To the list of absences above, we may add that the work of Hilbert’s main collaborator Paul Bernays is underrepresented, probably because his original papers of the 1920s are too philosophical. And one further omission appears hard to explain, even taking into account the already mentioned bias in the treatment of set theory: Zermelo’s paper “Über Grenzzahlen und Mengenbereiche.”\(^ {16}\) This presents today’s ZF system, including the Axiom of Foundation, and offers an extremely interesting study of the cumulative hierarchy, inspired in earlier work by von Neumann. We might try to explain its omission by the antagonism between Zermelo’s platonistic attitude toward the higher infinite and the antirealist leanings of both Quine and Dreben. That led Zermelo to offer a second-order axiomatization of ZF, which again conflicted with the opinion of Quine and Dreben that first-order logic is the only logic worthy of this name. (However, the true reason might have been simply that Zermelo’s paper, in the Polish journal *Fundamenta Mathematicae*, escaped the attention of van Heijenoort and collaborators.)

From Frege to Gödel deals with the period 1879–1931. Today we might prefer a broader delimitation of the formative period of mathematical logic, say, from 1847 (Boole’s *Mathematical analysis of logic*) to 1936. Van Heijenoort justified his exclusion of Boole and the whole trend of the algebra of logic saying that it was an important development, but not “a great epoch.” And we may concede that, faced with the necessity to cut somewhere, it is not bad to start with Frege’s *Begriffsschrift*, which in retrospect emerges as impressively clear and precise, truly epoch-making. Of course, this decision leads to historical

\(^{15}\) See Ferreirós [1999, Chapter X].

\(^{16}\) *Fundamenta Mathematicae* 16 (1930) 29–47. See the translation in Ewald [1996] and the introductory comments by M. Hallett.
injustice if readers are misled into thinking that the contributions of authors such as Boole, De Morgan, Peirce, and Schröder were not very relevant.

As regards the final date, one might prefer to stretch the interval to include seminal papers in formal semantics by Tarski and the crucial contributions of 1936, by Turing and Church, on computability and the Entscheidungsproblem. Again, one might justify van Heijenoort’s choice by pointing to the large extra space that the inclusion of such papers would call for. Moreover, there was the initial idea of a second volume that would probably have covered all of this. And, as regards Alfred Tarski—probably the name whose omission is most striking, being the founder of the Berkeley school, usually regarded as second only to Gödel among 20th century logicians—it is also true that the well-known collection Logic, Semantics, Metamathematics had been available since 1956.

Still I suspect that both the exclusion of Tarski and the decision to begin with Frege were related to the conception of logic emanating from Harvard. The viewpoint behind van Heijenoort’s selection is, quite clearly, a strictly formal one, by which I mean one that is focused on a syntactic presentation and investigation of classical logic. By beginning with Frege and closing with Gödel’s investigations in proof theory, that conception was enhanced. (The role of Frege as a founding figure had been repeatedly emphasized by both Russell and Quine, and thus to start with him was very much in line with Harvard views.) If it is true that Dreben was intensely involved in the project, one would have even more reason to expect a bias toward the syntactic approach to logic. Those who knew him report that he disliked Tarskian set-theoretic semantics and model theory. In general, he rejected all kinds of speculative trends—and model theory, by depending on the strong “philosophical” assumptions of set theory, was in his eyes a speculative, risky tendency within mathematical logic. This again was in line with Quine’s views concerning logical matters. (Needless to say, Dreben’s hand led to interesting additions, too; for instance, the extremely adequate inclusion of a good number of Skolem’s papers.)

Another feature that is strongly in line with the Harvard perspective, as represented by Quine, is the strong thesis that “there are no two logics” (p. vii), reinforced in From Frege to Gödel by the exclusion of alternative logics, modal logic, and the like. It may be surprising to find such a forceful statement in a book that gives much space to intuitionism, but this becomes less so when one realizes that van Heijenoort did not include contributions such as Heyting’s 1930 formalization of intuitionistic logic.

It is interesting to reflect on the fact that, even though he was guided by a stern, purely formal, and seemingly ahistoric conception of logic, van Heijenoort’s selection still bears the mark of historical developments. The decision to include papers in set theory and foundations could only be justified historically, in terms of the great contribution those fields made to the reform and delimitation of mathematical logic, as well as to its philosophy. For a long time, from Frege and Dedekind to Carnap, set theory was conceived to be merely a part of elementary logic, and the evolution of modern logic was intimately entangled with debates on the principles of set theory. Subsequently, in the 1920s, most of the novelties introduced into logical theory and the conception of logic itself were closely linked with the

17 Although very interested in the history of analytical philosophy, Dreben is reported to have frequently said that all philosophy is nonsense, “garbage,” although “the history of garbage—that’s scholarship!” (personal communications, G. Hellman and A. Kanamori).

18 For this, see Mancosu [1998].
foundational debate. I believe it is for these reasons that an anthology of logic in the first third of the 20th century was felt to require inclusion of material in set theory and the foundations of mathematics.\footnote{This way of presenting the matter had already appeared in S.C. Kleene’s famous \textit{Introduction to Metamathematics} [1952], which may well have served as a model for van Heijenoort.}

As we see, an analysis of the contents and origins of \textit{From Frege to Gödel} offers quite an interesting overview of important chapters in the history of logic during the 20th century. Philosophically, this would appear as an important instantiation of a far-reaching general idea: that historical factors, the historical situation (including its immediate or even its remote past), are present whenever we offer an evaluation in any subject matter, however abstract and universal it may seem. This principle had already been established for scientific methodology, and it is instructive to find it confirmed in the very abstract realm of logic itself.

But if we come down to more practical matters, one thing can be regarded as certain. The new paperback edition of van Heijenoort’s famous source book must be welcome by all those who have an active interest in the history of mathematical logic and the foundations of mathematics. Which, of course, includes anybody who is truly interested in the history of 20th century mathematics.

\textbf{References}

José Ferreirós

\textit{Department of Philosophy and Logic, University of Sevilla, Sevilla, Spain}

10.1016/j.hm.2003.07.005
For more than three decades this outstanding collection has been the authoritative source of basic texts in mathematical logic in the English language; it remains without peer to this day.

―Michael Detlefsen, University of Notre Dame.

About the Author. Jean van Heijenoort, well known in the fields of mathematical logic and foundations of mathematics, is Professor of Philosophy at Brandeis University and has taught at New York and Columbia Universities.

Find many great new & used options and get the best deals for From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931 by Jean van Heijenoort (Paperback, 1990) at the best online prices at eBay! Free delivery for many products!

From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931 by Jean van Heijenoort (Paperback, 1990). Be the first to write a review. About this product.

International delivery varies by country, please see the Wordery store help page for details. Read full description. See details and exclusions - From Frege to Goedel A Source Book in Mathematical Logic, 1879-9780674324497. See all 13 brand new listings.