Winter School on modular functions
in one and several variables,
December 2014, Goa University.

Algebraic independence of periods of elliptic curves

Michel Waldschmidt

References

d’irrationalité: le cas de \(\Gamma(1/4) \) et \(\Gamma(1/3) \)”, Acta Arith. 104 (2002), no. 3,

the Lindemann-Weierstrass theorem.

[5] — , “Algebraic independence of values of exponential and elliptic func-
tions”, in Proceedings of the International Congress of Mathematicians

[7] — , Contributions to the theory of transcendental numbers, Mathematical
Surveys and Monographs, vol. 19, American Mathematical Society,
Providence, RI, 1984.

[8] D. W. Masser — Elliptic functions and transcendence, Springer-Verlag,

generated by values of elliptic functions”, Invent. Math. 72 (1983), no. 3,

Some of these paper are available on the internet. See in particular

http://www.imj-prg.fr/~michel.waldschmidt/texts.html

Michel WALDSCHMIDT
UPMC Univ Paris 06, UMR 7586-IMJ
F–75005 Paris
FRANCE
e-mail: michel.waldschmidt@imj-prg.fr
URL: http://www.imj-prg.fr/~michel.waldschmidt
Several subsequent papers analyzed the performance of other forms of elliptic curves proposed in the mathematical literature. See, e.g., [18] for the speed of several dialects of the Weierstrass form, [34] for the speed of Jacobi intersections, [28] for the speed of Hessians, and [9] for the speed of Jacobi quartics; see also [38] and [23], which introduced the Montgomery and Doche/Icart/Kohel forms and analyzed their speed. An elliptic curve over k is a nonsingular projective algebraic curve E of genus 1 over k with a chosen base point $O \in E$. Remark. There is a somewhat subtle point here concerning what is meant by a point of a curve over a non-algebraically-closed field. Any elliptic curve E over k is isomorphic to the curve in \mathbb{P}^2_k dened by some generalised Weierstrass equation, with the base point O of E being mapped to $(0 : 1 : 0)$. Conversely any non-singular generalised Weierstrass equation denes an elliptic curve, with this choice of basepoint. Proposition 1.6, called periods of E and let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. It can be shown that ω_1, ω_2 are linearly independent over \mathbb{R} and hence Λ is a lattice. Fix a point $P_0 \in E(\mathbb{C})$ and define the map $\psi : E(\mathbb{C}) \rightarrow \mathbb{C}/\Lambda$. For further accounts of these types of results and their history, I highly recommend Waldschmidt's articles "Transcendence of periods: the state of the art," Pure Appl. Math. Q. 2 (2006), no. 2, part 2, 435-463, and "Elliptic functions and transcendence," Surveys in number theory, Dev.