ACTIVE CONTROL OF SOUND AND VIBRATION
History, Fundamentals, and State of the Art

Dieter Guicking
Drittes Physikalisches Institut
University of Göttingen
Friedrich-Hund-Platz 1
37077 Göttingen
Germany
E-Mail: Dieter.Guicking@phys.uni-goettingen.de

• Introduction

• Active Noise Control (ANC)
 – Early investigations
 – The Energy Objection
 – The JMC-Theory
 – One-dimensional Sound Propagation, Algorithms
 – Interaction of Primary and Secondary Sources
 – Waveform Synthesis for (Quasi)periodic Noise
 – Small Volumes — Personal Noise Protection
 – Local Cancellation
 – Three-Dimensional Sound Fields in Enclosures
 – Freefield Applications of Active Noise Control

• Active Vibration Control (AVC)
 – Early Applications
 – AVC for Beams, Plates and Structures
 – Active Vibration Isolation
 – Civil Engineering Structures
 – Active and Adaptive Optics
 – Noise Reduction by Active Structural Control
 – Sound Transmission Control
 – Control of Nonlinear Dynamical Systems

• Active Flow Control

• Conclusion

• References
Abstract

In a narrow sense, coherent active control of sound and vibration is the cancellation or (less often) enhancement by superposition of an antiphase or in-phase additional signal, usually from an external source of sound or vibration. The historical development of the technologies are outlined, the fundamentals under aspects of physics, signal processing and algorithms are treated, and the current state of research and applications are reviewed, more or less systematically sorted. Related fields such as adaptive optics, active flow control, and control of nonlinear dynamic systems are included, too. Active control of sound and vibration in a wider sense, the incoherent superposition, aiming at sound power enhancement etc., are generally not considered in this overview.

1. Introduction

The concept of cancelling unwanted sound or vibrations by superimposing a compensation signal exactly in antiphase is not new. In acoustics, most of the early publications in this field are patent applications, showing that technical applications have been considered possible. However, for a long time experiments were nothing more than laboratory demonstrations which were smiled at as curiosities, far from reality. Only modern electronics made technical applications feasible. The situation was different with the compensation of low-frequency mechanical vibrations; these techniques were used in practice in a very early stage. In the following, an overview is given of the historical development, technical realizations, and present research activities.

2. Active Noise Control (ANC)

2.1. Early Investigations

The first experiments on the superposition of sound fields were presumably made in 1878 by Lord Rayleigh (1878). He describes under the heading “Points of Silence” how he scanned, with his ear, the interference field produced by two electromagnetically synchronized tuning forks, and that he found maxima and minima of loudness. Although it can be assumed that these experiments should only prove that coherent sound fields can interfere in the same way as do optical fields (which was known since the days of Thomas Young), patent applications by Coanda (1930, 1932), and Lueg (1933) aimed at possible noise reduction, however only in Lueg’s proposal in a physically realistic way. Lueg’s German and especially the related US application (Lueg 1934) with an additional sheet of drawings are therefore considered rightly as the first written documents on active control of sound. Lueg has already provided the usage of electroacoustic components, but the first laboratory experiments were documented by Olson (1953, 1956), who also listed far-sighted prospective applications. Technical applications were not possible at that time because of the clumsy electronic vacuum tube equipment, lacking sufficient versatility. Also, our ears present a problem, namely the nearly logarithmic dependence of the perceived loudness on the sound pressure. For example, a sound level reduction by 20 dB requires an amplitude precision of the compensation signal within 1 dB and a phase precision within 6 degrees of the nominal values – for all frequency components of the noise signal. These demands, together with the requirement of temporal stability, have impeded for a long time the technical use of coherent-active compensation systems, also termed anti-sound, until in recent years digital adaptive filters proved to be the appropriate tool.

2.2. The Energy Objection

In the context of the active cancellation of sound fields a question often posed is “Where does the energy go?”. With the seemingly convincing argument that the primary field energy can only be enhanced by adding secondary sound sources, the concept of active noise control (or, ANC) is principally questionable (Schreiber 1971). The objection is correct if the cancellation is achieved by
interference only; a local cancellation leads to doubling of the sound pressure elsewhere. But a more detailed consideration reveals that the secondary sources can, properly placed and driven, absorb the primary energy. In other situations, the sources interact such that the radiation impedance is influenced and thereby the sound production reduced. This will be elucidated in the following sections.

2.3. The JMC Theory

M. JESSEL and his coworkers G. MANGIANTE and G. CANEVET have developed a theory which has become known, after their initials, as the JMC theory. They have treated the problem sketched in Fig. 1 (e. g., JESSEL 1972). Sound sources \(Q \) are located within a volume \(V \) with surface \(S \). Along \(S \), secondary sources shall be arranged such that they compensate the sound field radiated to the outside, but do not alter the field within \(V \). This is possible according to Huygens’s principle: substitute sources \(q \) continuously distributed along \(S \) can create the same sound field in the outside as the primary sources \(Q \). With reversed poling, they produce a field which is in antiphase to the original one. Assuming that such reversed (and acoustically transparent) substitute sources operate together with \(Q \), the sound fields in the outside cancel each other.

![Figure 1: JMC theory.](image)

If the cancellation sources are acoustic monopoles they radiate not only into the outside but also into \(V \), creating standing waves and enhancing the sound energy in \(V \). The inward radiation can be prevented by combining monopoles \(q_0 \) along \(S \) with dipoles \(q_1 \) so that the primary field in \(V \) is not altered. As to the energy, the tripoles formed by the \(q_0 \) and \(q_1 \) (directional radiators with cardioid characteristic) absorb, along \(S \), the sound coming from \(Q \). They serve as perfectly matched absorbers with an acoustic input impedance equal to the characteristic impedance of the medium.

It follows with the same argument that a source-free region \(V \) can actively be shielded against sound influx from the outside by arranging appropriate compensation sources along the surface \(S \) of \(V \). Monopole distributions along \(S \) reflect, tripoles absorb the incident sound.

For a given surface \(S \) and primary source distribution \(Q(r) \), where \(r \) is the position vector, the substitution sources \(q_0(r) \) and \(q_1(r) \) can be calculated from the Helmholtz-Huygens integral equation which links the sound field in a region to the sound pressure and its gradient along the surface (MANGIANTE 1977).

For practical applications, the theoretically required continuous source distribution has to be replaced by discrete sources. Their minimal surface density follows from their absorption cross section \(A = \lambda^2/4\pi \) (NELSON/Elliott 1992) and the smallest sound wavelength \(\lambda \) for which the system shall be effective. This concept has been verified in computer simulations (MANGIANTE/VIAN 1977) and experimentally in an anechoic room (PIRAUX/MAZZANTI 1985). A practical application is noise shielding of large open-air power transformers by an array of loudspeakers to save the people living in the surroundings from the annoying hum (LEE et al. 1997). A few researchers are further developing the JMC theory (UOSUKAINEN 2003, TAKANE 2004).
2.4. One-dimensional Sound Propagation, Algorithms

Primary and cancellation sound must have the same direction of propagation. It is therefore easier to cancel plane, guided waves in ducts (below the onset frequency of the first lateral mode) than, for example, three-dimensional sound fields in rooms with omnidirectional propagation. In a set-up as sketched in Fig. 2 (which has in principle already been proposed by Lueg in 1934) the sound incident from the left is received by the microphone and, after some signal processing, fed to the loudspeaker such that to the right side the primary and the additional signal cancel each other.

After Lueg’s idea, the “signal processing” should comprise the amplitude adjustment, sign reversal, and time delay according to the acoustic path length. However, an active noise control system is not practically applicable in this simple form. First, the acoustic feedback from the loudspeaker to the microphone has to be avoided and, second, in most cases it is necessary to follow up the transfer function adaptively since the time delay and the sound spectrum can change as a result of temperature drift, superimposed flow, and other environmental conditions. It is therefore common practice today to apply adaptive digital filters which are implemented on fast signal processors to enable on-line updating. Fig. 3 shows a typical block diagram (amplifiers, A/D and D/A converters, as well as antialiasing lowpass filters being omitted).

The transfer function of the acoustic feedback path from the loudspeaker \(L \) to the reference microphone

\[
\begin{align*}
R & \xrightarrow{\text{primary sound}} L \xrightarrow{\text{acoustic feedback}} E \\
& \xrightarrow{\text{error path}} \text{ compensated loudspeaker} \\
& \xrightarrow{\text{error signal}} \text{ error microphone}
\end{align*}
\]
crophone R is modeled by the feedback compensation filter FCF so that the input signal $x(t)$ of the main filter does not contain contributions from L. The error microphone E receives, in the case of incomplete cancellation, an error signal $e(t)$ which serves for the adaptation of the main filter A. The filter A adapts such that it models the acoustic transfer function from R to L, including the (complex) frequency responses of R and L. The filters A and FCF are often realized as transversal filters (finite impulse response, or FIR filters), and the most common adaptation algorithm is the filtered-x LMS algorithm after Widrow and Hoff (WIDROW/STEARNS 1985) where LMS stands for least mean squares. The algorithm is controlled by the product $e(t)x(t)$ and adjusts the filter coefficients by a stochastic gradient method so that $x(t)$ and $e(t)$ are decorrelated as far as possible. If the primary sound is broadband, the propagation delay from L to E decorrelates $x(t)$ and $e(t)$ to a certain degree which impairs the performance of the ANC system. In order to compensate for this effect, $x(t)$ is pre-filtered in the update path (lower left) with a model H_{LE} of the error path H_{LE}. The necessary error path identification is performed with an auxiliary broadband signal of the noise generator NG in the adaptation unit shown at the lower right of Fig. 3. The coefficients of H_{LE} (and also of FCF) are either determined once at start-up and then kept constant or, if the transfer functions vary too much with time, permanently; in the latter case, however, the (weak) auxiliary signal remains audible at the duct end since it is not compensated for by the loudspeaker signal $y(t)$.

After adaptation the loudspeaker acts as a sound-soft reflector for the wave incident from the left which is, hence, not absorbed but reflected to the left. With a different control strategy the loudspeaker could be operated as an “active absorber”, but the maximum possible absorption is half of the incident sound power; either one quarter are reflected and transmitted. The reason is that it is not possible to achieve perfect impedance matching with a single loudspeaker mounted at the duct wall. The incident wave ‘sees’ the parallel connection of the loudspeaker input impedance and the characteristic impedance of the ongoing part of the duct. (But a loudspeaker at the end of a duct can be driven to perfectly absorb the incident sound (GUICKING/KARCHER 1984).)

If the standing waves or the stronger sound propagation to the left in arrangements as those in Figs. 2 and 3 cannot be tolerated, a true active absorber can be realized with loudspeaker pairs or linear arrays (SWINBANKS 1973, WINKLER/ELLIOTT 1995, GUICKING/FRIENTEINSTEIN 1995).

A series of commercial ANC systems working on the principle of sound-soft reflection have been developed by the US company Digisonix and successfully installed mainly in industrial exhaust stacks since 1987 (ERIKSSON 1986). The filters A and FCF are combined to one recursive, infinite-impulse response (IIR) filter, often applying the Feintuch algorithm (FEINTUCH 1976). The signal processors allow on-line operation at least up to 500 Hz, suppress tonal noise by up to 40 dB and broadband noise typically by 15 dB. Similar systems have been installed also in Germany (VON HEESSEN 1996, DEUS 1998, HANSEN 1999) and elsewhere (HANSEN et al. 1996). The lower frequency limit is given by pressure fluctuations of the turbulent flow, the upper limit by the computational speed of the signal processor and the lateral dimensions of the duct. The higher modes occurring at higher frequencies can be cancelled, however by using a greater amount of hardware (ERIKSSON et al. 1988); only few systems with multi-mode cancellation have therefore been installed so far.

The filtered-x LMS algorithm is very popular because of its moderate signal processing power requirement (the numerical complexity is $O(2N)$ if N is the filter length), but its convergence is very slow for spectrally colored random noise. Fan noise spectra have typically a steep roll-off with increasing frequency so that the convergence behavior of the algorithm is often insufficient. Efforts have therefore been made to develop algorithms the convergence behavior of which is independent of the signal statistics, but which can still be updated in real time. One example is the SFAEST algorithm (MOUSTAKIDES 1989) which has a complexity of $O(8N)$. Since it furthermore calculates the optimal filter coefficients in one single cycle, it is particularly useful for nonstationary signals and nonstationary transfer functions. Stability problems in the initialization period could be solved by the FASPIS configuration which stands for fast adaptive secondary path integration scheme (SCHIRMACHER/GUICKING 1994, POPOVICH 1995). More on algorithms can be found in the books TÖKII/LEITCH 1992 and KUO/MORGAN 1996. The very difficult extension of the fast algorithms and the FASPIS configuration to IIR filters has been accomplished in the doctoral thesis of SCHIRMA-
The modern control theory provides advanced algorithms such as H_∞, H_2, fuzzy control, optimal control, artificial neural networks, genetic algorithms, to name just a few. Overviews are presented, e.g., by the books of Levine 1995 and Moheimani 2003.

An important concept in many fields of ANC is adaptive noise cancelling which became widely known since 1975 by B. Widrow et al.'s seminal paper (Widrow et al. 1975), see Fig. 4: A ‘primary’ sensor picks up a desired signal which is corrupted by additive noise, its output being s_p. One or more ‘reference’ sensors are placed such that their output s_r is correlated (in some unknown way) with the primary noise, but does not essentially contain the desired signal. Then, s_r is adaptively filtered and subtracted from s_p to obtain a signal estimate with improved signal-to-noise ratio (SNR) since the adaptive filter decorrelates the output and s_r. This concept, realized by a linear predictive filter employing the least mean squares (LMS) algorithm, has been patented (McCool et al. 1979) and found wide applications: in speech transmission from a noisy environment (Silverberg 1993), in seismic exploration (Widrow 1983a), medical ECG diagnostics (Widrow 1983b), a noise cancelling stethoscope (Harley 1993), speech enhancement in noisy environment (Ding et al. 2004), hearing aids Vanden Berghe/Wouters 1998 and many other problems.

In adaptive feedforward control systems as shown in Fig. 3 the sound propagation path from microphone R to loudspeaker L must be long enough to provide the time required for calculating the signal to be fed to L (causality condition). The limiting factor is usually not the computation time in the signal processor but the group delay in the antialiasing lowpass filters which are necessary in digital signal processing.

Problems in technical ANC applications are often posed by the loudspeakers. Very high low-frequency noise levels are typically encountered in exhaust stacks or pipes, demanding high membrane excursions without nonlinear distortion and, often, robustness against aggressive gases and high temperatures. On the other hand, a smooth frequency response function (as for Hi-Fi boxes) is not an issue because frequency irregularities can be accounted for by the adaptive filter. Special loudspeakers for ANC systems have been developed (Eatwell 1995, Raida/Bschorr 1996, Daniels 1996, Carme 1997).

2.5. Interaction of Primary and Secondary Sources

The ANC systems discussed in the preceding sections aimed at absorption or at least reflection of the primary sound power, tacitly assuming that the primary power radiation is not influenced by the cancellation sources. However, if it is possible to reduce the primary sound production by the operation of the secondary sources, this will be a particularly effective method of noise reduction.

![Figure 4: Adaptive noise cancelling.](image-url)
A monopole radiator of radius a with a surface particle velocity v produces a volume velocity $q_0 = 4\pi a^2 v$. The sound power radiated into a medium of density ρ and sound velocity c at a frequency ω (wavelength λ, wave number $k = 2\pi/\lambda$) is $P_1 = \rho \omega^2 q_0^2/(4\pi c)$. Adding an equal but antiphase monopole at a distance $d \ll \lambda$, produces a dipole which radiates the power $P_1 = P_2 = P_0 (kd)^2/3$.

Supplementing this dipole by another one to form a quadripole, the radiated power is further reduced to $P_2 = P_0 (kd)^4/15$, assuming $kd \ll 1$ (Morse/Ingard 1968, Chapter 7.1).

These conditions are correct if the volume velocity q is the same in all three cases, but this is not necessarily so because ANC, by adding a compensation source in close proximity, does not only raise the multipole order, but can also alter the radiation impedance $Z_r = R_r + j\omega M_r$. The surrounding medium acts upon a monopole with the radiation resistance $R_{r0} = 4\pi a^2 \rho c$ and the mass load $M_{r0} = 4\pi a^2 \rho$ (three times the replaced fluid mass), upon a dipole with $R_1 = R_{r0} \cdot (ka)^2/6$ and $M_1 = M_{r0}/6$, and on a quadripole with $R_2 = R_{r0} \cdot (ka)^4/45$ and $M_2 = M_{r0}/45$ (Morse/Ingard 1968). The mass load leads to a reactive power, an oscillation of kinetic energy between primary and secondary source (“acoustical short-circuit”). The product $v^2 R_s$ determines the radiated (active) power. The particle velocity v of the primary source depends on its source impedance and the radiation resistance. A “low-impedance” source (sound pressure nearly load independent) reacts on a reduced radiation resistance R_s with enhanced particle velocity v so that the reduction of radiated power by the higher multipole order is partially counteracted. But the sound radiation of impedance-matched and of “high-impedance” (velocity) sources is reduced in the expected way by an antiphase source in the nearfield.

These relationships can be utilized, e.g., for the active reduction of noise from exhaust pipes (ships, industrial plants, automobiles with internal combustion engines). A large demonstration project was implemented as early as 1980: the low-frequency hum (20 to 50 Hz) from a gas turbine chimney stack has been cancelled actively by a ring of antisound sources (Swinbanks 1984). Each loudspeaker has been fed from one microphone pair through amplifiers with fixed gain and phase settings. Such a simple open-loop control was sufficient in this case due to the highly stationary noise and its narrow frequency band.

The pulsating gas flow emanating from a narrow exhaust pipe is a very efficient “high-impedance” monopole sound radiator; an adjacent antiphase source turns it into a dipole or, in the case of a concentric annular gap around the exhaust mouth, into a rotationally symmetric quadripole. Such “active mufflers” for cars have often been proposed (e.g., Chaplin 1983), but practical installations are still lacking, for technical and economical reasons: microphones and loudspeakers beneath the car body must be protected against shock and vibration, splash water, thrown-up gravel and the hot, aggressive exhaust gas (Lehringer/Zintel 1995). Furthermore, active mufflers have to compete with the highly efficient and comparatively cheap conventional mufflers from sheet metal. Researchers in the muffler industry are, however, still developing and improving active systems, testing prototypes, and they are optimistic that active mufflers might go into production because they combine noise cancellation with backpressure reduction, and perspectives to include sound quality design are seen, too (Krüger et al. 2005).

2.6. Waveform Synthesis for (Quasi)periodic Noise

A conceptually simple adaptive algorithm has been developed by a British research team (Chaplin 1983). It assumes (quasi)periodic noise, the source of which is accessible for obtaining synchronization pulses (e.g., vehicle engine noise). The principle is explained in Fig. 5. A loudspeaker is mounted next to the exhaust pipe end, and is fed from a waveform synthesizer, realized with digital electronics. An error microphone is placed in the superposition zone and yields a control signal by which the loudspeaker output is optimized. The sync pulses (obtained, e.g., by a toothed wheel and an inductive probe) guarantee that the compensation signal tracks the changing engine rotation speed automatically. The waveform is adapted using a trial-and-error strategy either in the time domain or, faster, in the frequency domain. In the latter case, the amplitudes and phases of the (low order) harmonics of the engine noise are adapted. The prominent feature of this active system is that
Figure 5: Active cancellation of (quasi)periodic noise by tracking control with sync input and waveform synthesis (after Chaplin 1983).

no microphone is required to receive the primary noise because the signal processor performs the waveform synthesis by itself. The loudspeaker must only provide the necessary acoustic power; resonances, nonlinearities and ageing are automatically compensated for. A disadvantage is the slower convergence as compared to “true” adaptive algorithms.

An example for a technical application of ANC with waveform synthesis in medicine is a noise canceller for patients undergoing a magnetic resonance imaging (MRI) inspection. The electrical high-current impulses needed to build up the required high magnetic fields cause, by magnetostriction and “wire forces”, an annoying impulsive noise which is cancelled with the help of an active headset (see Section 2.7). Because no ferromagnetics and preferably no metal at all must be brought into the MRI tube, pneumatic headsets with long plastic tubes as sound guides have been developed for this purpose which are fed from a signal processor with a simple feedforward control and fixed filters (Eghtesadi 1993). Since, however, the compensation is not very good, an improvement with a metal-free optical microphone for controlling an adaptive filter has been developed (Niehoff 1999, Behler/Lentz 2004, Tyrrell 2006). A different approach aims at controlling the structural vibrations of the MRI tube walls (Qiu/Tani 1995, Roozen et al. 2005, Nestorović et al. 2006).

2.7. Small Volumes — Personal Noise Protection

An acoustically simple ANC problem is presented by an enclosure the dimensions of which are small compared with the wavelength even at the highest frequencies of interest. The sound pressure is then spatially almost constant, and the cancelling source can be placed anywhere in the enclosure. Correctly fed, it acts as an active absorber.

One such small enclosure is the space between a headphone and the ear drum. The concept of “personal noise protection” by actively controlled head phones was originally claimed in a Russian patent application (Bykhovskij 1949), but reliable signal processing was, in spite of intense research work in many countries, possible only very much later. Parallel developments by the US company Bose (McKinley 1986) and Sennheiser in Germany (Veit 1988) resulted in active headsets for aircraft pilots; active headsets are meanwhile also produced by other companies, being offered as pure hearing protectors in open or closed construction, with feedforward and feedback control in analog electronics, and also with a signal input for telecommunication. The initially very costly active headsets have become so much cheaper that a wider application in traffic and noisy working places appears realistic. Quite recently, also adaptive digital signal processing is being applied to active headsets and hearing protectors (Ray et al. 2006).

2.8. Local Cancellation

Placing an anti-source in the immediate nearfield of a primary noise source gives a “global” effect as explained in Section 2.5, but if the distance of the two sources gets wider, then only a local cancellation by interference remains (Nelson/Elliott 1992). Such systems did not receive general attention as noise cancelers because of their very limited spatial range of efficiency (in the order of $\lambda/10$).
But local cancellation can be very useful for acoustic laboratory experiments, such as head-related stereophony when dummy head recordings are reproduced by two loudspeakers (SCHROEDER et al. 1974). As the sound radiated from the left loudspeaker should be received by the left ear only, a compensation signal is superimposed onto the right channel which compensates the sound coming from the left loudspeaker to the right ear, and vice versa, see Fig. 6. As compared to the familiar source localization between the loudspeakers of a conventional stereo set, this procedure provides true three-dimensional sound field reproduction with source localization in any direction, including elevation, and also gives a reliable depth impression. This is not a problem of noise reduction, but cancellation of a sound field with the same methods.

![Diagram](image)

*Figure 6: Crosstalk cancellation in head-related stereophonic sound field reproduction with two loudspeakers by prefiltering. $S = S(\omega)$ and $A = A(\omega)$ are the nearside and farside transfer functions, respectively, between loudspeakers and eardrums; circles to the left from the loudspeakers indicate filters with inscribed transfer functions, $C = C(\omega) = -A(\omega)/S(\omega)$."

Of great practical relevance is local active sound field cancellation for teleconferencing and hands-free telephones (speakerphones) in order to compensate, at the microphone location, acoustic room echoes which degrade the speech quality and tend to cause howling by self-excitation; the active system causes dereverberation of the room response (KUO et al. 1995, HÄNSLER 1992, KIM et al. 2004). Echo cancellation and a speech enhancement system for in-car communication has been described by ORTEGA et al. (2005). Echo cancellation for stereophonic sound field reproduction is more involved than single channel applications. Solutions are presented, e. g., by GNSLER/BENESTY 2002 and KHONG/NAYLOR 2006. The psychoacoustic aspect of masking has been introduced in acoustic echo cancellation combined with perceptual noise reduction by GUSTAFSSON et al. (2002). A special algorithm for echo cancellation in fast changing environments has been developed by HOSHUYAMA/GOUBRAN 2004.

A hot topic in speech transmission with multiple not precisely known sound sources is blind source separation, using microphone arrays and algorithms such as spatial gradient estimation, independent component analysis (ICA), statistical source discrimination, maximum likelihood and Kalman filters. A comprehensive survey is given by CICHOCKI/AMARI 2002.

A related older problem is the removal of electric line echoes in long-distance telephony with satellite communication links where the long transmission path leads to audible echoes which greatly disturb speech communication (SONDHI 1966). The signals are reflected from an impedance mismatch at the so-called hybrid where the two-wire line branches into the four-wire local subscriber cable. The geostationary satellites are positioned at 36,000 km height so that the echo return path (transmitter \rightarrow satellite \rightarrow receiver \rightarrow satellite \rightarrow transmitter) is $4 \times 36,000$ km which yields, in spite of the signal propagation at the speed of light, an echo delay time of as much as nearly 0.5 s. All satellite telephone links are therefore equipped with transmission line echo compensators (see, e. g., HERTER/LÖRCHER 1990).

Locally effective ANC systems with compact microphone/loudspeaker systems in feedback configuration have been described by OLSON as early as 1956; they absorb low-frequency sound in a
narrow space around the microphone and have been proposed for aircraft passengers and machine workers (EATWELL 1991). Because of the very restricted spatial field of efficiency such systems did not receive general attention. In more recent experiments the test persons disliked also the strong sound level fluctuations when they moved their head.

The application of acoustic echo cancellation has also been proposed for ultrasonic testing where flaw echoes can be masked by strong surface echoes. It is possible to subtract the latter from the received signal and so improve the detectability of flaws (HUTCHENS/MORRIS 1987, GILBERT 1988). Similarly, the the ANC technique can be applied to cancel the reflection of the ultrasonic echo from the receiver (HASLER 1991).

2.9. Three-dimensional Sound Fields in Enclosures

The active cancellation of complex sound fields in large rooms, possibly with nonstationary sources and time-varying boundary conditions, is far beyond the scope of present ANC technology. More realistic is the concept of reducing room reverberation by placing active absorbers along the walls. The incident sound is received by microphones which feed the loudspeakers so that their acoustic input impedance is matched to the sound field. The situation is the same as in Fig. 1 if the enclosure walls are considered as a Huygens surface. The loudspeakers can also be driven such that their reflectivity takes arbitrary values in a wide frequency range (experimentally, reflection coefficients between 0.1 and 3 have been realized). This would facilitate the construction of a room with adjustable reverberation time (WENZEL 1992), but at present still with a prohibitive amount of hardware.

The concept of active impedance control was originally propagated by our Göttingen team (GUICKING/KARCHER/ROLLWAGE 1983, GUICKING/MELCHER/WIMMEL 1989) and has stimulated a lot of later research activities (e.g., ISE 1994, LACOUR 2000, MELCHER 2001, GALLAND et al. 2002, GALLAND et al. 2005).

Intense research has been devoted to the active cancellation of sound in small enclosures such as vehicle, aircraft and helicopter cabins. Four-stroke internal combustion engines have an inherent unbalance at twice the rotational speed (the “second engine order”) which often coincides with the frequency of the fundamental cabin resonance of cars, so exciting the highly annoying “boom”. Since this noise is strongly synchronized with the engine speed its active cancellation is possible with a relatively little amount of hardware and software (ELLIOTT/NELSON 1988). It has, however, only been offered in a production car for some time by NISSAN for their model Bluebird in Japan. Many other car manufacturers develop their own systems, and some of them have successfully built prototypes, but all of them are hesitating for several reasons to install the ANC systems in series production (e.g., within a “comfort package” at extra cost). One argument is that customers would complain if they pay for noise reduction, and there still remains some disturbing noise.

More involved is the cancellation of the broadband rolling noise, both inside and outside the car. Laboratory experiments and driving tests have led to preliminary solutions; the nonstationarity of the noise input and of the acoustic transfer functions demand fast adapting algorithms, also for the error path identification (BÖHM 1992, BRONZEL 1993, SCHIRMACHER/GUICKING 1994, SCHIRMACHER 1995). The noise and vibration problems are becoming more severe with small low-consumption cars now under development; they will possibly be equipped with both active noise control for the interior space and active vibration control for the engine and wheel suspensions. For more luxurious cars the trend in the automobile industry goes to combining ANC technology with “sound quality design” for the car interior so that the driver has the choice, e.g., of a more silent car or a more sportive sound (FREYMANN 1996, SCHEUREN et al. 1999, GONZÁLEZ et al. 2003, REES/ELLIOTT 2006).

For economical reasons, the aircraft industry tends to replace jet engines by propeller (or turbo-prop) aircraft for short and medium distances which are, however, much louder in the cabin. Relatively little effort is necessary to employ a technology known as synchrophasing. The eddy strings separating from the propeller blade tips hit the fuselage and excite flexural vibrations of the hull which radiate sound into the cabin. If the right and left propeller are synchronized so that their “hits” meet the fuselage out of phase instead of simultaneously, then higher-order shell vibrations are ex-
cited which radiate less and so reduce the noise level inside (Fuller 1986). Better results, however with more involved installations are obtained with multichannel adaptive systems. An international European research project with the acronym ASANCA has resulted in a technical application (JOHANSSON et al. 1997).

An important issue in ANC applications to three-dimensional sound fields is the placement of microphones and loudspeakers. Attention has to be paid not only to causality, but also to observability and controllability, in particular in rooms with distinct resonances and standing waves (modal control). If, for some frequency, the error microphone of an adaptive systems is positioned in a sound pressure node it does not receive the respective frequency component or room mode so that no cancelling signal will be generated and no adaptation is possible. If the loudspeaker is placed in a node, then a compensation signal calculated by the processor cannot effectively be radiated into the room, which usually leads to higher and higher signal amplitudes and finally to an overload error of the digital electronics.

2.10. Freefield Active Noise Control

Technical applications of ANC to three-dimensional exterior noise problems are still quite rare, but many research projects have been reported and a number of patents exist. The problems with active mufflers for cars with internal combustion engines were discussed in Section 2.5. A technically similar problem is the fly-over noise of propeller aircraft which mainly consists of two components: the propeller blade tip vortex threads, and the equally impulsive exhaust noise. If the exhaust tail pipe is shifted to a position near to the propeller plane, and if the angular position of the propeller on its shaft is adjusted so that in downward direction the pressure nodes of one source coincide with the antinodes of the other one, then the destructive interference reduces the fly-over noise by several dB (KALLERGIS 1992).

A method for reducing traffic noise by cancelling the tyre vibrations of an automobile is disclosed in a patent (VEIT 1997), proposing electromagnetic actuation of the steel reinforcement embedded into the tyres.

A frequently investigated problem is the cancellation of power transformer noise, the annoying hum of which consists of multiples of the power line frequency (50 Hz, in USA 60 Hz). It is a seemingly simple problem because of the strong periodicity and the readily accessible reference signal. Several methods have been proposed, either by loudspeakers arranged around the site (CONOVER/GRAY 1955), by force input to the oil in which the transformer is immersed (CHAPLIN et al. 1979) or to the surrounding tank walls (HORI et al. 1980), or by sound insulating active panels enclosing the transformer (GOSSMAN/EATWELL 1992, HILDEBRAND/HU 1993). Experimental results are discussed by ANGEVINE (1992 and 1995). Problems are posed, however, first, by the weather-dependent sound propagation – wind and temperature gradients tilt the wave front (AI et al. 2000) – and second, because the hum spectrum depends on the electrical load of the transformer (QIU et al. 2002).

It has also been tried to improve actively sound shielding noise barriers along roads, in particular to compensate for the low frequency noise diffracted around the barrier top. The idea is to place loudspeakers along the upper edge and to drive them with adaptive feedforward control, the reference microphones being placed on the roadside and the error microphones in the shadow zone (ISE 1991, KOH/MÖSER 2004). Improvements are concerned with multiple loudspeaker arrays also along the side walls of the noise barrier (NAKASHIMA/ISE 2004), or multiple reference control and virtual error microphones (BERKHOFF 2005).

3. Active Vibration Control (AVC)

3.1. Early Applications

In contrast to active noise control, active vibration control has long been applied, in particular to ships. MALLOCK (1905) reports on vibration reduction on a steam ship by synchronization of the two
engines in opposite phase, HORT (1934) on the reduction of roll motion by an actively driven Frahm tank (water is pumped between tanks located on the two sides of the ship), and ALLAN (1945) on roll stabilization by bouyancy control with “activated fins”, auxiliary rudders with variable angle of attack protruding laterally from the ship hull into the water. The latter technology is still practiced today.

Active damping of aircraft skin vibrations has been proposed by VANG (1942), providing multichannel feedback control with displacement sensors and electromagnetic actuators, mainly in order to prevent fatigue damage.

Early publications can also be found on the active control of vibrations in beams, plates and composite structures. In mechanical wave filters where a desired longitudinal wave mode in a bar is superimposed by an interfering detrimental flexural wave mode, the latter can be damped by pairs of piezoelectric patches on either side of the bar which are connected through an electrical resistor (MASON 1945).

In special environments, e.g., ultrahigh vacuum, magnetic bearings without lubricants are preferred for rotating machinery, but their inherent instability requires feedback control which equally reduces vibrations (ANON. 1957).

An early NASA patent (LEATHERWOOD et al. 1969) provides an active mass damper (see Section 3.4) to cancel structural vibration.

In the 1980s, longitudinal vibrations of the ship superstructure caused by nonuniform propulsion have been compensated with a type of dynamic absorber, realized by a centrifugal pendulum. This is a pendulum swinging along the length direction of the ship and rotating about an axis pointing also in lengthwise direction. The swinging of the pendulum is synchronized to the ship’s vibration by controlling the rotational frequency, and hence the centrifugal force, which together with gravity determines its natural frequency (MANO 1985).

3.2. AVC for Beams, Plates and Structures

Aircraft and spacecraft have a great impact on investigations in active control of structural vibration. Other than the abovementioned whole-body vibrations of ships which are comparatively easy to control due to their very low frequencies, one is here confronted with elastic structures, i.e., continuous media with an infinite number of degrees of freedom the control of which presents fundamentally different problems. First, there are the different wave types in solids (of which longitudinal, torsional and transversal waves are the most important), their control demands various types of actuators and sensors. Furthermore, the propagation speed is generally higher in solids than in air so that causality problems occur with broadband adaptive feedforward controllers. As a consequence, many problems are treated with modal control where, especially in case of overlapping modes, the control spillover problem has to be considered: the unwanted excitation of additional modes the resonance curves of which extend to the controlled frequency. In Fig. 7 it is assumed that the Nth mode, resonant at frequency \(f_N \), shall be controlled; the tails of the neighboring resonance curves have nonnegligible amplitudes at \(f_N \) (the dots on the dashed line) and are therefore also excited by the control signal at \(f_N \), to some extent. Owing to the phase slope around a resonance, the neighboring modes are usually enhanced rather than damped when the Nth mode is suppressed. While control spillover leaves the system stable, observation spillover can produce instability (MEIROVITCH 1990).

For satellites, the damping of modal vibrations is important after pointing position maneuvers etc. since they are built from low-loss materials and air friction is not present in space. The optimization of number and placement of sensors and actuators for the mostly applied adaptive feedback controllers requires precise knowledge of the structural dynamics so that reliable modelling in state-space coordinates and a realistic estimation of discretization errors are possible. An introduction to this field is given by MEIROVITCH (1990).

Damping and stiffness control in mechanical junctions can also be achieved by dry friction control where the pressing force is controlled by a piezoelectric actuator, in feedforward or feedback control, typically by a nonlinear algorithm, e.g., a neural network (GAUL 1997), or by on–off control (BUAKA
In aircraft technology, active controllers have been developed for maneuver (TANG 2004) and gust load alleviation (TUZCU/MEIROVITCH 2006), as well as for wing flutter control (FREYMANN 1986), and for noise and vibration reduction in helicopters (HELLER et al. 1993), in particular by individual blade control (IBC) (CHEN et al. 2005) and higher harmonic control (HHC) (CLARK/GIBBS 1994). A major German research initiative was the “Adaptive Wing Project” (HEYLAND et al. 1990), aiming at aircraft drag reduction by boundary layer and flow separation control with the help of wing shape control, realized by an adjustable lengthwise tiny bump near the trailing edge of the wing, with piezoelectric or shape memory alloy actuators.

Initially, technical problems were encountered, among others, by the fact that sensor and actuator materials such as piezoceramics, piezopolymers, electro- and magnetostrictive materials, shape memory alloys, electro- and magnetorheological fluids are no constructional materials with a mechanical strength sufficient for load-bearing structures; some of them are also too brittle or too weak for fail-safe operation. This led to a new research field since the end of the 1980s: the development of modern compound materials with embedded sensors and actuators (keywords are intelligent or smart materials, bi-functional elements, adaptive or smart structures, adaptronics, structronics) (MELCHER/BÜTER 1995, FULLER et al. 1995, MONNER et al. 2004). Much information on these research fields is published in the specialized journals “Journal of Intelligent Material Systems and Structures” (since 1990), “Smart Structures and Materials” (since 1992), in the Proceedings of the “International Conferences on Adaptive Structures and Technologies (ICAST)”, and of the “Adaptronic Congresses” held in Germany since 1996.

3.3. Active Vibration Isolation

Possibilities for active noise control in road vehicles have been discussed in Section 2.9. The predominant sources of interior noise are engine and wheel vibrations which propagate as structure-borne sound through the car body and finally radiate as airborne sound into the cabin. It is therefore reasonable to develop active engine mounts and active shock absorbers which are stiff enough to carry the static load, but dynamically resilient so that vibrations are not transmitted. Piezoceramic actuators are suited for excursions in the submillimetre range (EDBERG/VON FLOTOW 1992), for larger amplitudes and forces at frequencies of a few Hertz hydraulic and pneumatic actuators are available (STEIN 1997). Compact and robust combinations of conventional rubber mounts with electro-dynamically driven hydraulics have been constructed as active hydromounts for a wide frequency range (WELTIN 1993, KIM/SINGH 1995). Active mounts are, for example, standard components of the DaimlerChrysler Mercedes CL Coupé (MAACK/STÄBLER 2000).

In helicopter cabins, the principal noise source is the gear box, the vibrations of which are transmitted through typically 7 struts to the cabin roof (as structure-borne sound), and then radiated into the cabin as airborne sound. Particularly annoying are tonal components between 700 Hz and 4 kHz. The vibration transmission has been reduced by piezoelectric actuators at the struts so that the noise
level in the cabin became much lower, as was verified in ground tests. The development towards a technical product is a current research topic (ASIRI et al. 2006).

Active control technology has been applied for improved vibration isolation of tables for optical experiments, scanning microscopes, vibration sensitive semiconductor manufacturing stages, etc. Commercial products are offered by several companies, e.g., Newport (USA), Technical Manufacturing Corporation (TMC, USA), Halcyonics (Germany), and Integrated Dynamics Engineering (IDE, Germany); the latter company offers also active compensation systems for magnetic stray fields which is important, e.g., for high resolution electron microscopes. Information is available at their respective homepages.

Sophisticated controllers have been designed to actively isolate satellite antennas and installations for, e.g., microgravity experiments from structural vibrations caused by the position controllers and other on-board machinery (EBERG/VON FLOTOW 1992, WANG et al. 2006).

The performance of hydraulic shock absorbers can be improved by applying electrorheological fluids (ERF) (MORISHITA/MITSUI 1992). ERF are fine suspensions of polarisable small dielectric particles in an unpolar basic fluid, e.g., polyurethane in low-viscosity silicone oil (ANON. 1995). Their viscosity can be adjusted reversibly between watery and pasty by applying electrical fields of several kV/mm.

Also suitable are magnetorheological fluids (MRF), suspensions of small ferromagnetic particles in a basic fluid, requiring a magnetic field for the viscosity to be changed. The field is usually applied by electromagnets which demand high electric current instead of high voltage (TAKI et al. 1991). In order to provide a wide range of viscosity control, the viscosities of the basic fluids selected for ERF and MRF are as low as possible, which leads to sedimentation problems, in particular with MRF because of its specifically heavier particles than in ERF.

Nevertheless, much research is focusing on MRF applications: earthquake protection of buildings (DYKE et al. 1996), journal bearings of rotating machinery (WANG/MENG 2003), truss structures in spacecraft (OH 2004), vehicle suspensions (SASSI et al. 2005), sandwich beams (L. CHEN 2005), cable swaying (ZHOU et al 2006), adjustable dynamic absorbers for flexible structures (DENG et al. 2006), squeeze film dampers (CARMIGNANI et al. 2006), and many other other systems.

3.4. Civil Engineering Structures

Wind-induced swaying of tall, high-rise buildings can amount to amplitudes of several metres in the upper floors. This low-frequency sway can be reduced by tuned mass dampers (TMD) acting as resonance absorbers: masses of about 1% of the total mass of the building are placed in the top floor and coupled to the building structure through springs and dampers. Their performance is raised by actively enhancing the relative motion. A prominent example where such an active TMD has been installed is the Citycorp Center in New York (PETERSEN 1980). Less additional mass is required for aerodynamic appendages, protruding flaps that can be swivelled and utilize wind forces like sails to exert cancelling forces on the building (CHANG/SOONG 1980).

Many research activities in the USA, Canada and particularly Japan aim at the development of active earthquake protection for buildings where, however, severe technical problems have still to be solved (IZUMI 1991, LI 2004).

For slim structures such as antenna masts, bridges etc. tendon control systems have been constructed for the suppression of vibrations by controlled tensile forces acting in different diagonal directions (SOONG/NATKE 1988, HANAHARA/TADA 2004).

3.5. Active and Adaptive Optics

The quality of pictures taken with optical or radio astronomical mirror telescopes depends essentially on the precision to which the optimal mirror shape is maintained. Modern swivelling large telescopes suffer from deformation under their own weight which is compensated more efficiently by active
shape control than by additional stiffeners which inevitably enhance the mass of the structure. This technology is called active optics (Merkle 1988, Schwarzschild 1993).

While the telescope motions are very slow (time constants above 0.1 s) and therefore easy to control, the adaptive optics have solved the more complicated problem of controlling picture blurring by atmospheric turbulence, the so-called seeing which fluctuates at frequencies about 1000 Hz. The large primary mirror is fixed, but the smaller secondary mirror surface rests on a matrix of piezoceramic actuators which are adjusted by an adaptive multichannel controller so that a reference star is optimally focused. If no reference star exists in the vicinity of the observed object an artificial guide star can be created by resonance scattering of an intense laser beam from sodium atoms at about 100 km height (Fugate et al. 1991, Hippler et al. 1999, Baranec et al. 2005). Adaptive optics have improved the optical resolution of the best telescopes by a factor of 10 to 50, to almost the diffraction limit.

This technology was developed in the USA during the 1970s for the military SDI project and has been declassified not before 1991 when civil research had reached almost the same state (Collins 1992). Meanwhile, this technology has been applied to nearly all modern large optical infrared telescopes such as the Gemini North Telescope on top of the Mauna Kea on Hawaii (Schwarzschild 1999) and the Very Large Telescope (VLT) in Chile, and will be applied to even larger telescopes planned for the future (Gilmozzi 2006, Yang et al. 2006).

Adaptive optical mirrors have also found applications in industrial production for laser cutting and welding (Bell 1997), and generally for optimizing the quality of high-intensity laser beams (Baumhacker 2002, Burns 2005). Other non-astronomical fields of adaptive optics application are confocal microscopy (Booth et al. 2002), spatial light modulators (SLM) for optical telecommunication (Hemmati 2006), and ophthalmology (Zommer et al. 2006). Most of the small deformable mirrors are manufactured as micromechanical systems (MEMS) (e.g., Vogel/Yang 2006). A survey of industrial and medical applications of adaptive optics is given by Greenaway/Burnett 2004. The growing importance of this field can also be seen in the fact that many textbooks on adaptive optics have been published (e.g., Tyson 1991, Lukin 1996, Hardy 1998, Roddier 1999, Busher et al. 2002).

3.6. Noise Reduction by Active Structural Control

Active control of structural vibrations and active control of sound fields have been developed almost independently, including differing control concepts (mostly feedforward in acoustics, mostly feedback in vibration). But since some time the two fields have become connected. Many noise problems result from radiation of structure-borne sound, e.g., in the interior of cars and aircraft, on ships, by vibrating cladding panels of machines, etc. Here comes into action a concept known under the acronym ASAC (Active Structural Acoustic Control) (Fuller et al. 1991) where noise reduction is not attained by superimposing airborne sound to the disturbing noise field but by controlling the vibrating structure itself. This is possible by suitably placed and controlled actuators to suppress the structural vibration, although this is not necessarily the optimal solution.

Acoustically relevant are mainly plate bending waves which due to their frequency dispersion \(c_B \propto \sqrt{\omega} \) are non-radiating at low frequencies and radiating above the critical frequency \(\omega_g \) at which the bending wave velocity equals the sound velocity \(c_0 \) in the surrounding medium. When \(c_B < c_0 \) the acoustical short-circuit between adjacent wave crests and troughs yields a weak sound radiation into the far-field, but for \(c_B > c_0 \) a very effective radiation results. The proportionality factor in \(c_B \propto \sqrt{\omega} \) contains the flexural stiffness so that its modification shifts the critical frequency and can turn radiating modes into non-radiating ones (modal restructuring). Much work has been done to investigate how, e.g., by laminates from sheet metal and piezolayers as sensors and actuators, adaptive structures can be constructed which can suppress, in propeller aircraft etc., the above-mentioned fuselage excitation by eddy threads, so enabling a substitution or at least a supplement to the more involved (and heavier) direct noise control by microphone/loudspeaker systems (Clark/Fuller 1991, Fuller/Elliott/Nelson 1995, Kidner/Wright 2005).
3.7. Sound Transmission Control

Sound transmission through walls, windows, sound shielding plates etc. is effectively controlled by active means. This is often achieved by ASAC (see preceding chapter), but in some instances also by different means. Experiments have shown that sound transmission through double-glazed windows can be reduced by actively controlled loudspeakers in the gap between the glass panes (JAKOB/MÖSER 2004). Actively controlled double wall partitions are also reported by CARNEAL/FULLER 2004 and AKISHITA et al. 2004, the latter one for insulating floor impulsive noise.

The favorite actuators for active structural damping are piezoceramics, bonded to the structure to form adaptive (smart) structures (CHOI 2006). Semi-active approaches apply passive (sometimes actively controlled) shunts across the piezoactuators to save energy (KIM 2005, GUYOMAR 2006), or even to gain electrical energy from the vibrated piezos, a rather new technology labelled energy harvesting or energy scavenging (LESIEUTRE 2004, STEPHEN 2006).

3.8. Control of Nonlinear Dynamical Systems

“The control of complex nonlinear systems has received a lot of attention in recent years, due to the great potential of applications in physics, mathematics, engineering and medicine (OTT et al 1990, KAPITANIAK 1998).

The purpose of controlling chaos is to modify the behavior of a complex nonlinear system, attempting to obtain some beneficial effects. In some cases, chaos may be desirable, such as in the case of combustion applications, because it enhances mixing of air and fuel and hence leads to better performance. On the other hand, in aerodynamic and hydrodynamic applications, chaos (turbulence) is undesirable because it dramatically increases the drag of vehicles and results in an increased operational cost. In some applications it can be advantageous to introduce new bifurcation in order to obtain a better operating condition (this technique is known as anticontrol) (CHEN 1994, NAYFEH/BALACHANDRAN 1995). The methods to control chaos can be classified in two categories: the methods based on the geometric properties of chaotic dynamics, and the approaches based on control theory. The first scheme takes advantage of the characteristics of the chaotic attractors and utilizes small changes in one or more control parameters when the trajectory comes in the neighborhood of the unstable periodic orbit where it is desired to stabilise the system (OTT et al. 1990, JACKSON 1991), PASKOTA/LEE 1997, MACAU/GREBOGI 2001). In the second scheme, the feedback controller can be used to stabilize the states around the unstable fixed point (HÜBLER/LÜSCHER 1989, JACKSON 1991, CHEN/DONG 1993a, CHEN/DONG 1993b, NJIMEJER/BERGHUIS 1995)”. (Cited from AGUILAR-IBÁÑEZ 2004). An overview of bifurcation control has been given by CHEN 2000, outlining the theory, control concepts, and potential applications.

For active control of flow instabilities and compressor surge or stall see Section 4 on Active Flow Control. Unstable orbit stabilization of uncertain systems is possible by sliding mode control (YAU 2000) or by delayed feedback control (TIAN/YU 2000). A medical application is the stabilization of atrial fibrillation, a chaotic rapid oscillation of blood flow in the heart vestibules (DITTO et al. 2000). Of practical importance is also the control of magnetic bearings. Being frictionless and free from lubricants, they are often applied in vacuum apparatus (also in spacecraft) such as high-speed centrifuges, but they require a stabilizing feedback controller (e.g., JI/HANSEN 2005).

An example where the forced transition of regular oscillation into chaotic motion is intended (anticontrol or “chaotification”) is the stabilization of a neural network by state feedback control (WANG/CHEN 2000). Secure communication by controlled chaos and synchronization of transmitter and receiver is another field of growing importance (PARLITZ/KOCAREV 1996).

For more information about nonlinear dynamical systems see the Chapter written by U. Parlitz in this volume.
4. **Active Flow Control**

Coherent active control technology is also applied to fields other than sound and structural vibrations, among which the physics of fluid flow is gaining more and more importance. One of the many interactions of sound and flow is the transition from laminar flow of a slim gas flame into turbulence by insonification. Conversely, the turbulence of a flame has been suppressed actively by feedback control of a microphone/loudspeaker system (DINES 1984).

Laboratory experiments have shown since about 1982 that the transition from laminar to turbulent flow can be shifted to higher Reynolds numbers by controlling the Tollmien-Schlichting waves in the boundary layer, thereby providing drag reduction which is of great technical relevance. This can be achieved with thermal inputs (LIEPMANN/NOSENCHUK 1982), or by acoustical or vibrational excitation (EGELHOF 1985, MANGIAROTTY 1989, EVERT et al. 2000).

Also, the dangerous surge and stall in compressors, resulting from compressor instabilities, can be suppressed acoustically (HARPER 1991). It is an interesting aspect that the active control of sound fields – which is generally restricted to linear superposition – controls a highly nonlinear process in this case (FFOWCSWILLIAMS 1986, FFOWCSWILLIAMS/MÖHRING 1999).

An ionized gas stream in a combustion chamber (e.g., in a rocket) tends to produce unstable resonance oscillations which can be suppressed by an appropriately controlled electric d.c. current through the ionized gas, employing a feedback controller with a photoelectric cell as oscillation sensor (BABCOCK/CATTANEO 1968).

A micro-electromechanical system (MEMS) to be mounted on fan blades is presented by LEE (1995), comprising a turbulence sensor, an integrated circuit, and an actuator by which turbulence noise can either be reduced, or – in the case of heat exchangers – amplified in order to improve heat transfer. Experiments on this interesting technique have been described by HO et al. (1999), reporting flight control of a delta wing aircraft, and by BOIKO/KOZLOV (1999) who influenced the laminar/turbulent transition along a wing profile in a wind tunnel.

Blade-vortex interaction causing the rattling impulsive noise from helicopters can be reduced by controlling flaps at the trailing edges (CHARLES et al. 1994). Helicopter stall can also be controlled by trailing-edge flaps (GERONTAKOS/LEE 2006), or by plasma actuators (POST/CORKE 2006). In a further development, tip vortices of helicopter blades, aircraft foils, or marine propellers can be reduced by fluid injection to the high-pressure side of the lifting body (NGO 1996, KIM et al. 2005).

Dynamic stabilization of jet-edge flow with various adaptive linear feedback control strategies has been experimentally verified by PRECKEL and RONNEBERGER (1999). Disturbing resonances in a large wind tunnel with free-jet test section (the so-called Göttingen model) can be suppressed by feedback ANC, employing multiple loudspeakers (WICKERN 1997). Active flow control can also provide a low-frequency high-intensity sound source, utilizing an aeroacoustic instability (LANGE/RONNEBERGER 1999, 2003).

Conclusions

Coherent active control systems are commercially applied in acoustics in certain problem areas, but only in acoustically somehow “simple” situations: small volume, one-dimensional sound propagation, quasiperiodic noise, isolated modes. There are many more applications in vibration technology but there are also fields where the nonapplication of a well-developed technology is at first sight surprising, among them flutter control of aircraft wings which has been successfully tried since more than 30 years. Here the flutter limit would be shifted to a higher flight speed, but this is not practiced from safety considerations: if such an active controller fails, and that cannot be excluded with complex systems as these, the danger of wing fracture and hence an air crash would be too high. This is a general problem; precautions have to be taken in safety-relevant applications, where failure of the active control system must not have catastrophic consequences.

The general interest in active control of noise and vibration is steadily increasing, a fact which can also be concluded from the growing number of textbooks, special conferences and journal papers.
per year. Based on the author’s collection of more than 12,000 references on active control of sound and vibration (Guicking 2003), Fig. 8 shows a histogram of the number of publications grouped in five-year periods. An exponential increase is observed from the 1950s through the early 1980s with doubling every 5 years, followed by further growth at reduced pace (approximately doubling in ten years). There are nearly twice as many papers on active vibration control than on active sound field control, and there are about 7% patent applications. This is relatively high for a research topic and proves the considerable commercial interest (Guicking 2005).
Figure 8: Five-year cumulants of ANVC publications, based on the author’s data files.
REFERENCES

